![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > kmlem7 | Structured version Visualization version GIF version |
Description: Lemma for 5-quantifier AC of Kurt Maes, Th. 4, part of 4 => 1. (Contributed by NM, 26-Mar-2004.) |
Ref | Expression |
---|---|
kmlem7 | ⊢ ((∀𝑧 ∈ 𝑥 𝑧 ≠ ∅ ∧ ∀𝑧 ∈ 𝑥 ∀𝑤 ∈ 𝑥 (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅)) → ¬ ∃𝑧 ∈ 𝑥 ∀𝑣 ∈ 𝑧 ∃𝑤 ∈ 𝑥 (𝑧 ≠ 𝑤 ∧ 𝑣 ∈ (𝑧 ∩ 𝑤))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | kmlem6 9179 | . 2 ⊢ ((∀𝑧 ∈ 𝑥 𝑧 ≠ ∅ ∧ ∀𝑧 ∈ 𝑥 ∀𝑤 ∈ 𝑥 (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅)) → ∀𝑧 ∈ 𝑥 ∃𝑣 ∈ 𝑧 ∀𝑤 ∈ 𝑥 (𝑧 ≠ 𝑤 → ¬ 𝑣 ∈ (𝑧 ∩ 𝑤))) | |
2 | ralinexa 3145 | . . . . . 6 ⊢ (∀𝑤 ∈ 𝑥 (𝑧 ≠ 𝑤 → ¬ 𝑣 ∈ (𝑧 ∩ 𝑤)) ↔ ¬ ∃𝑤 ∈ 𝑥 (𝑧 ≠ 𝑤 ∧ 𝑣 ∈ (𝑧 ∩ 𝑤))) | |
3 | 2 | rexbii 3189 | . . . . 5 ⊢ (∃𝑣 ∈ 𝑧 ∀𝑤 ∈ 𝑥 (𝑧 ≠ 𝑤 → ¬ 𝑣 ∈ (𝑧 ∩ 𝑤)) ↔ ∃𝑣 ∈ 𝑧 ¬ ∃𝑤 ∈ 𝑥 (𝑧 ≠ 𝑤 ∧ 𝑣 ∈ (𝑧 ∩ 𝑤))) |
4 | rexnal 3143 | . . . . 5 ⊢ (∃𝑣 ∈ 𝑧 ¬ ∃𝑤 ∈ 𝑥 (𝑧 ≠ 𝑤 ∧ 𝑣 ∈ (𝑧 ∩ 𝑤)) ↔ ¬ ∀𝑣 ∈ 𝑧 ∃𝑤 ∈ 𝑥 (𝑧 ≠ 𝑤 ∧ 𝑣 ∈ (𝑧 ∩ 𝑤))) | |
5 | 3, 4 | bitri 264 | . . . 4 ⊢ (∃𝑣 ∈ 𝑧 ∀𝑤 ∈ 𝑥 (𝑧 ≠ 𝑤 → ¬ 𝑣 ∈ (𝑧 ∩ 𝑤)) ↔ ¬ ∀𝑣 ∈ 𝑧 ∃𝑤 ∈ 𝑥 (𝑧 ≠ 𝑤 ∧ 𝑣 ∈ (𝑧 ∩ 𝑤))) |
6 | 5 | ralbii 3129 | . . 3 ⊢ (∀𝑧 ∈ 𝑥 ∃𝑣 ∈ 𝑧 ∀𝑤 ∈ 𝑥 (𝑧 ≠ 𝑤 → ¬ 𝑣 ∈ (𝑧 ∩ 𝑤)) ↔ ∀𝑧 ∈ 𝑥 ¬ ∀𝑣 ∈ 𝑧 ∃𝑤 ∈ 𝑥 (𝑧 ≠ 𝑤 ∧ 𝑣 ∈ (𝑧 ∩ 𝑤))) |
7 | ralnex 3141 | . . 3 ⊢ (∀𝑧 ∈ 𝑥 ¬ ∀𝑣 ∈ 𝑧 ∃𝑤 ∈ 𝑥 (𝑧 ≠ 𝑤 ∧ 𝑣 ∈ (𝑧 ∩ 𝑤)) ↔ ¬ ∃𝑧 ∈ 𝑥 ∀𝑣 ∈ 𝑧 ∃𝑤 ∈ 𝑥 (𝑧 ≠ 𝑤 ∧ 𝑣 ∈ (𝑧 ∩ 𝑤))) | |
8 | 6, 7 | bitri 264 | . 2 ⊢ (∀𝑧 ∈ 𝑥 ∃𝑣 ∈ 𝑧 ∀𝑤 ∈ 𝑥 (𝑧 ≠ 𝑤 → ¬ 𝑣 ∈ (𝑧 ∩ 𝑤)) ↔ ¬ ∃𝑧 ∈ 𝑥 ∀𝑣 ∈ 𝑧 ∃𝑤 ∈ 𝑥 (𝑧 ≠ 𝑤 ∧ 𝑣 ∈ (𝑧 ∩ 𝑤))) |
9 | 1, 8 | sylib 208 | 1 ⊢ ((∀𝑧 ∈ 𝑥 𝑧 ≠ ∅ ∧ ∀𝑧 ∈ 𝑥 ∀𝑤 ∈ 𝑥 (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅)) → ¬ ∃𝑧 ∈ 𝑥 ∀𝑣 ∈ 𝑧 ∃𝑤 ∈ 𝑥 (𝑧 ≠ 𝑤 ∧ 𝑣 ∈ (𝑧 ∩ 𝑤))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 382 = wceq 1631 ∈ wcel 2145 ≠ wne 2943 ∀wral 3061 ∃wrex 3062 ∩ cin 3722 ∅c0 4063 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-ral 3066 df-rex 3067 df-v 3353 df-dif 3726 df-nul 4064 |
This theorem is referenced by: kmlem13 9186 |
Copyright terms: Public domain | W3C validator |