![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > kmlem5 | Structured version Visualization version GIF version |
Description: Lemma for 5-quantifier AC of Kurt Maes, Th. 4, part of 3 => 4. (Contributed by NM, 25-Mar-2004.) |
Ref | Expression |
---|---|
kmlem5 | ⊢ ((𝑤 ∈ 𝑥 ∧ 𝑧 ≠ 𝑤) → ((𝑧 ∖ ∪ (𝑥 ∖ {𝑧})) ∩ (𝑤 ∖ ∪ (𝑥 ∖ {𝑤}))) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difss 3770 | . . . 4 ⊢ (𝑤 ∖ ∪ (𝑥 ∖ {𝑤})) ⊆ 𝑤 | |
2 | sslin 3872 | . . . 4 ⊢ ((𝑤 ∖ ∪ (𝑥 ∖ {𝑤})) ⊆ 𝑤 → ((𝑧 ∖ ∪ (𝑥 ∖ {𝑧})) ∩ (𝑤 ∖ ∪ (𝑥 ∖ {𝑤}))) ⊆ ((𝑧 ∖ ∪ (𝑥 ∖ {𝑧})) ∩ 𝑤)) | |
3 | 1, 2 | ax-mp 5 | . . 3 ⊢ ((𝑧 ∖ ∪ (𝑥 ∖ {𝑧})) ∩ (𝑤 ∖ ∪ (𝑥 ∖ {𝑤}))) ⊆ ((𝑧 ∖ ∪ (𝑥 ∖ {𝑧})) ∩ 𝑤) |
4 | kmlem4 9013 | . . 3 ⊢ ((𝑤 ∈ 𝑥 ∧ 𝑧 ≠ 𝑤) → ((𝑧 ∖ ∪ (𝑥 ∖ {𝑧})) ∩ 𝑤) = ∅) | |
5 | 3, 4 | syl5sseq 3686 | . 2 ⊢ ((𝑤 ∈ 𝑥 ∧ 𝑧 ≠ 𝑤) → ((𝑧 ∖ ∪ (𝑥 ∖ {𝑧})) ∩ (𝑤 ∖ ∪ (𝑥 ∖ {𝑤}))) ⊆ ∅) |
6 | ss0b 4006 | . 2 ⊢ (((𝑧 ∖ ∪ (𝑥 ∖ {𝑧})) ∩ (𝑤 ∖ ∪ (𝑥 ∖ {𝑤}))) ⊆ ∅ ↔ ((𝑧 ∖ ∪ (𝑥 ∖ {𝑧})) ∩ (𝑤 ∖ ∪ (𝑥 ∖ {𝑤}))) = ∅) | |
7 | 5, 6 | sylib 208 | 1 ⊢ ((𝑤 ∈ 𝑥 ∧ 𝑧 ≠ 𝑤) → ((𝑧 ∖ ∪ (𝑥 ∖ {𝑧})) ∩ (𝑤 ∖ ∪ (𝑥 ∖ {𝑤}))) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1523 ≠ wne 2823 ∖ cdif 3604 ∩ cin 3606 ⊆ wss 3607 ∅c0 3948 {csn 4210 ∪ cuni 4468 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-v 3233 df-dif 3610 df-in 3614 df-ss 3621 df-nul 3949 df-sn 4211 df-uni 4469 |
This theorem is referenced by: kmlem9 9018 |
Copyright terms: Public domain | W3C validator |