MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  kgentopon Structured version   Visualization version   GIF version

Theorem kgentopon 21389
Description: The compact generator generates a topology. (Contributed by Mario Carneiro, 22-Aug-2015.)
Assertion
Ref Expression
kgentopon (𝐽 ∈ (TopOn‘𝑋) → (𝑘Gen‘𝐽) ∈ (TopOn‘𝑋))

Proof of Theorem kgentopon
Dummy variables 𝑦 𝑥 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uniss 4490 . . . . . . 7 (𝑥 ⊆ (𝑘Gen‘𝐽) → 𝑥 (𝑘Gen‘𝐽))
2 kgenval 21386 . . . . . . . . 9 (𝐽 ∈ (TopOn‘𝑋) → (𝑘Gen‘𝐽) = {𝑥 ∈ 𝒫 𝑋 ∣ ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝐽t 𝑘))})
3 ssrab2 3720 . . . . . . . . 9 {𝑥 ∈ 𝒫 𝑋 ∣ ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝐽t 𝑘))} ⊆ 𝒫 𝑋
42, 3syl6eqss 3688 . . . . . . . 8 (𝐽 ∈ (TopOn‘𝑋) → (𝑘Gen‘𝐽) ⊆ 𝒫 𝑋)
5 sspwuni 4643 . . . . . . . 8 ((𝑘Gen‘𝐽) ⊆ 𝒫 𝑋 (𝑘Gen‘𝐽) ⊆ 𝑋)
64, 5sylib 208 . . . . . . 7 (𝐽 ∈ (TopOn‘𝑋) → (𝑘Gen‘𝐽) ⊆ 𝑋)
71, 6sylan9ssr 3650 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑥 ⊆ (𝑘Gen‘𝐽)) → 𝑥𝑋)
8 iunin2 4616 . . . . . . . . . 10 𝑦𝑥 (𝑘𝑦) = (𝑘 𝑦𝑥 𝑦)
9 uniiun 4605 . . . . . . . . . . 11 𝑥 = 𝑦𝑥 𝑦
109ineq2i 3844 . . . . . . . . . 10 (𝑘 𝑥) = (𝑘 𝑦𝑥 𝑦)
11 incom 3838 . . . . . . . . . 10 (𝑘 𝑥) = ( 𝑥𝑘)
128, 10, 113eqtr2i 2679 . . . . . . . . 9 𝑦𝑥 (𝑘𝑦) = ( 𝑥𝑘)
13 cmptop 21246 . . . . . . . . . . 11 ((𝐽t 𝑘) ∈ Comp → (𝐽t 𝑘) ∈ Top)
1413ad2antll 765 . . . . . . . . . 10 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑥 ⊆ (𝑘Gen‘𝐽)) ∧ (𝑘 ∈ 𝒫 𝑋 ∧ (𝐽t 𝑘) ∈ Comp)) → (𝐽t 𝑘) ∈ Top)
15 incom 3838 . . . . . . . . . . . 12 (𝑦𝑘) = (𝑘𝑦)
16 simplr 807 . . . . . . . . . . . . . 14 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑥 ⊆ (𝑘Gen‘𝐽)) ∧ (𝑘 ∈ 𝒫 𝑋 ∧ (𝐽t 𝑘) ∈ Comp)) → 𝑥 ⊆ (𝑘Gen‘𝐽))
1716sselda 3636 . . . . . . . . . . . . 13 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑥 ⊆ (𝑘Gen‘𝐽)) ∧ (𝑘 ∈ 𝒫 𝑋 ∧ (𝐽t 𝑘) ∈ Comp)) ∧ 𝑦𝑥) → 𝑦 ∈ (𝑘Gen‘𝐽))
18 simplrr 818 . . . . . . . . . . . . 13 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑥 ⊆ (𝑘Gen‘𝐽)) ∧ (𝑘 ∈ 𝒫 𝑋 ∧ (𝐽t 𝑘) ∈ Comp)) ∧ 𝑦𝑥) → (𝐽t 𝑘) ∈ Comp)
19 kgeni 21388 . . . . . . . . . . . . 13 ((𝑦 ∈ (𝑘Gen‘𝐽) ∧ (𝐽t 𝑘) ∈ Comp) → (𝑦𝑘) ∈ (𝐽t 𝑘))
2017, 18, 19syl2anc 694 . . . . . . . . . . . 12 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑥 ⊆ (𝑘Gen‘𝐽)) ∧ (𝑘 ∈ 𝒫 𝑋 ∧ (𝐽t 𝑘) ∈ Comp)) ∧ 𝑦𝑥) → (𝑦𝑘) ∈ (𝐽t 𝑘))
2115, 20syl5eqelr 2735 . . . . . . . . . . 11 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑥 ⊆ (𝑘Gen‘𝐽)) ∧ (𝑘 ∈ 𝒫 𝑋 ∧ (𝐽t 𝑘) ∈ Comp)) ∧ 𝑦𝑥) → (𝑘𝑦) ∈ (𝐽t 𝑘))
2221ralrimiva 2995 . . . . . . . . . 10 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑥 ⊆ (𝑘Gen‘𝐽)) ∧ (𝑘 ∈ 𝒫 𝑋 ∧ (𝐽t 𝑘) ∈ Comp)) → ∀𝑦𝑥 (𝑘𝑦) ∈ (𝐽t 𝑘))
23 iunopn 20751 . . . . . . . . . 10 (((𝐽t 𝑘) ∈ Top ∧ ∀𝑦𝑥 (𝑘𝑦) ∈ (𝐽t 𝑘)) → 𝑦𝑥 (𝑘𝑦) ∈ (𝐽t 𝑘))
2414, 22, 23syl2anc 694 . . . . . . . . 9 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑥 ⊆ (𝑘Gen‘𝐽)) ∧ (𝑘 ∈ 𝒫 𝑋 ∧ (𝐽t 𝑘) ∈ Comp)) → 𝑦𝑥 (𝑘𝑦) ∈ (𝐽t 𝑘))
2512, 24syl5eqelr 2735 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑥 ⊆ (𝑘Gen‘𝐽)) ∧ (𝑘 ∈ 𝒫 𝑋 ∧ (𝐽t 𝑘) ∈ Comp)) → ( 𝑥𝑘) ∈ (𝐽t 𝑘))
2625expr 642 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑥 ⊆ (𝑘Gen‘𝐽)) ∧ 𝑘 ∈ 𝒫 𝑋) → ((𝐽t 𝑘) ∈ Comp → ( 𝑥𝑘) ∈ (𝐽t 𝑘)))
2726ralrimiva 2995 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑥 ⊆ (𝑘Gen‘𝐽)) → ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → ( 𝑥𝑘) ∈ (𝐽t 𝑘)))
28 elkgen 21387 . . . . . . 7 (𝐽 ∈ (TopOn‘𝑋) → ( 𝑥 ∈ (𝑘Gen‘𝐽) ↔ ( 𝑥𝑋 ∧ ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → ( 𝑥𝑘) ∈ (𝐽t 𝑘)))))
2928adantr 480 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑥 ⊆ (𝑘Gen‘𝐽)) → ( 𝑥 ∈ (𝑘Gen‘𝐽) ↔ ( 𝑥𝑋 ∧ ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → ( 𝑥𝑘) ∈ (𝐽t 𝑘)))))
307, 27, 29mpbir2and 977 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑥 ⊆ (𝑘Gen‘𝐽)) → 𝑥 ∈ (𝑘Gen‘𝐽))
3130ex 449 . . . 4 (𝐽 ∈ (TopOn‘𝑋) → (𝑥 ⊆ (𝑘Gen‘𝐽) → 𝑥 ∈ (𝑘Gen‘𝐽)))
3231alrimiv 1895 . . 3 (𝐽 ∈ (TopOn‘𝑋) → ∀𝑥(𝑥 ⊆ (𝑘Gen‘𝐽) → 𝑥 ∈ (𝑘Gen‘𝐽)))
33 inss1 3866 . . . . . 6 (𝑥𝑦) ⊆ 𝑥
34 elssuni 4499 . . . . . . . 8 (𝑥 ∈ (𝑘Gen‘𝐽) → 𝑥 (𝑘Gen‘𝐽))
3534ad2antrl 764 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑥 ∈ (𝑘Gen‘𝐽) ∧ 𝑦 ∈ (𝑘Gen‘𝐽))) → 𝑥 (𝑘Gen‘𝐽))
36 ssid 3657 . . . . . . . . . . . 12 𝑋𝑋
3736a1i 11 . . . . . . . . . . 11 (𝐽 ∈ (TopOn‘𝑋) → 𝑋𝑋)
38 elpwi 4201 . . . . . . . . . . . . . . . 16 (𝑘 ∈ 𝒫 𝑋𝑘𝑋)
3938ad2antrl 764 . . . . . . . . . . . . . . 15 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑘 ∈ 𝒫 𝑋 ∧ (𝐽t 𝑘) ∈ Comp)) → 𝑘𝑋)
40 sseqin2 3850 . . . . . . . . . . . . . . 15 (𝑘𝑋 ↔ (𝑋𝑘) = 𝑘)
4139, 40sylib 208 . . . . . . . . . . . . . 14 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑘 ∈ 𝒫 𝑋 ∧ (𝐽t 𝑘) ∈ Comp)) → (𝑋𝑘) = 𝑘)
4238adantr 480 . . . . . . . . . . . . . . . 16 ((𝑘 ∈ 𝒫 𝑋 ∧ (𝐽t 𝑘) ∈ Comp) → 𝑘𝑋)
43 resttopon 21013 . . . . . . . . . . . . . . . 16 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑘𝑋) → (𝐽t 𝑘) ∈ (TopOn‘𝑘))
4442, 43sylan2 490 . . . . . . . . . . . . . . 15 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑘 ∈ 𝒫 𝑋 ∧ (𝐽t 𝑘) ∈ Comp)) → (𝐽t 𝑘) ∈ (TopOn‘𝑘))
45 toponmax 20778 . . . . . . . . . . . . . . 15 ((𝐽t 𝑘) ∈ (TopOn‘𝑘) → 𝑘 ∈ (𝐽t 𝑘))
4644, 45syl 17 . . . . . . . . . . . . . 14 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑘 ∈ 𝒫 𝑋 ∧ (𝐽t 𝑘) ∈ Comp)) → 𝑘 ∈ (𝐽t 𝑘))
4741, 46eqeltrd 2730 . . . . . . . . . . . . 13 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑘 ∈ 𝒫 𝑋 ∧ (𝐽t 𝑘) ∈ Comp)) → (𝑋𝑘) ∈ (𝐽t 𝑘))
4847expr 642 . . . . . . . . . . . 12 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑘 ∈ 𝒫 𝑋) → ((𝐽t 𝑘) ∈ Comp → (𝑋𝑘) ∈ (𝐽t 𝑘)))
4948ralrimiva 2995 . . . . . . . . . . 11 (𝐽 ∈ (TopOn‘𝑋) → ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝑋𝑘) ∈ (𝐽t 𝑘)))
50 elkgen 21387 . . . . . . . . . . 11 (𝐽 ∈ (TopOn‘𝑋) → (𝑋 ∈ (𝑘Gen‘𝐽) ↔ (𝑋𝑋 ∧ ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝑋𝑘) ∈ (𝐽t 𝑘)))))
5137, 49, 50mpbir2and 977 . . . . . . . . . 10 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 ∈ (𝑘Gen‘𝐽))
52 elssuni 4499 . . . . . . . . . 10 (𝑋 ∈ (𝑘Gen‘𝐽) → 𝑋 (𝑘Gen‘𝐽))
5351, 52syl 17 . . . . . . . . 9 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 (𝑘Gen‘𝐽))
5453, 6eqssd 3653 . . . . . . . 8 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = (𝑘Gen‘𝐽))
5554adantr 480 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑥 ∈ (𝑘Gen‘𝐽) ∧ 𝑦 ∈ (𝑘Gen‘𝐽))) → 𝑋 = (𝑘Gen‘𝐽))
5635, 55sseqtr4d 3675 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑥 ∈ (𝑘Gen‘𝐽) ∧ 𝑦 ∈ (𝑘Gen‘𝐽))) → 𝑥𝑋)
5733, 56syl5ss 3647 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑥 ∈ (𝑘Gen‘𝐽) ∧ 𝑦 ∈ (𝑘Gen‘𝐽))) → (𝑥𝑦) ⊆ 𝑋)
58 inindir 3864 . . . . . . . 8 ((𝑥𝑦) ∩ 𝑘) = ((𝑥𝑘) ∩ (𝑦𝑘))
5913ad2antll 765 . . . . . . . . 9 (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑥 ∈ (𝑘Gen‘𝐽) ∧ 𝑦 ∈ (𝑘Gen‘𝐽))) ∧ (𝑘 ∈ 𝒫 𝑋 ∧ (𝐽t 𝑘) ∈ Comp)) → (𝐽t 𝑘) ∈ Top)
60 simplrl 817 . . . . . . . . . 10 (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑥 ∈ (𝑘Gen‘𝐽) ∧ 𝑦 ∈ (𝑘Gen‘𝐽))) ∧ (𝑘 ∈ 𝒫 𝑋 ∧ (𝐽t 𝑘) ∈ Comp)) → 𝑥 ∈ (𝑘Gen‘𝐽))
61 simprr 811 . . . . . . . . . 10 (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑥 ∈ (𝑘Gen‘𝐽) ∧ 𝑦 ∈ (𝑘Gen‘𝐽))) ∧ (𝑘 ∈ 𝒫 𝑋 ∧ (𝐽t 𝑘) ∈ Comp)) → (𝐽t 𝑘) ∈ Comp)
62 kgeni 21388 . . . . . . . . . 10 ((𝑥 ∈ (𝑘Gen‘𝐽) ∧ (𝐽t 𝑘) ∈ Comp) → (𝑥𝑘) ∈ (𝐽t 𝑘))
6360, 61, 62syl2anc 694 . . . . . . . . 9 (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑥 ∈ (𝑘Gen‘𝐽) ∧ 𝑦 ∈ (𝑘Gen‘𝐽))) ∧ (𝑘 ∈ 𝒫 𝑋 ∧ (𝐽t 𝑘) ∈ Comp)) → (𝑥𝑘) ∈ (𝐽t 𝑘))
64 simplrr 818 . . . . . . . . . 10 (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑥 ∈ (𝑘Gen‘𝐽) ∧ 𝑦 ∈ (𝑘Gen‘𝐽))) ∧ (𝑘 ∈ 𝒫 𝑋 ∧ (𝐽t 𝑘) ∈ Comp)) → 𝑦 ∈ (𝑘Gen‘𝐽))
6564, 61, 19syl2anc 694 . . . . . . . . 9 (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑥 ∈ (𝑘Gen‘𝐽) ∧ 𝑦 ∈ (𝑘Gen‘𝐽))) ∧ (𝑘 ∈ 𝒫 𝑋 ∧ (𝐽t 𝑘) ∈ Comp)) → (𝑦𝑘) ∈ (𝐽t 𝑘))
66 inopn 20752 . . . . . . . . 9 (((𝐽t 𝑘) ∈ Top ∧ (𝑥𝑘) ∈ (𝐽t 𝑘) ∧ (𝑦𝑘) ∈ (𝐽t 𝑘)) → ((𝑥𝑘) ∩ (𝑦𝑘)) ∈ (𝐽t 𝑘))
6759, 63, 65, 66syl3anc 1366 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑥 ∈ (𝑘Gen‘𝐽) ∧ 𝑦 ∈ (𝑘Gen‘𝐽))) ∧ (𝑘 ∈ 𝒫 𝑋 ∧ (𝐽t 𝑘) ∈ Comp)) → ((𝑥𝑘) ∩ (𝑦𝑘)) ∈ (𝐽t 𝑘))
6858, 67syl5eqel 2734 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑥 ∈ (𝑘Gen‘𝐽) ∧ 𝑦 ∈ (𝑘Gen‘𝐽))) ∧ (𝑘 ∈ 𝒫 𝑋 ∧ (𝐽t 𝑘) ∈ Comp)) → ((𝑥𝑦) ∩ 𝑘) ∈ (𝐽t 𝑘))
6968expr 642 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑥 ∈ (𝑘Gen‘𝐽) ∧ 𝑦 ∈ (𝑘Gen‘𝐽))) ∧ 𝑘 ∈ 𝒫 𝑋) → ((𝐽t 𝑘) ∈ Comp → ((𝑥𝑦) ∩ 𝑘) ∈ (𝐽t 𝑘)))
7069ralrimiva 2995 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑥 ∈ (𝑘Gen‘𝐽) ∧ 𝑦 ∈ (𝑘Gen‘𝐽))) → ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → ((𝑥𝑦) ∩ 𝑘) ∈ (𝐽t 𝑘)))
71 elkgen 21387 . . . . . 6 (𝐽 ∈ (TopOn‘𝑋) → ((𝑥𝑦) ∈ (𝑘Gen‘𝐽) ↔ ((𝑥𝑦) ⊆ 𝑋 ∧ ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → ((𝑥𝑦) ∩ 𝑘) ∈ (𝐽t 𝑘)))))
7271adantr 480 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑥 ∈ (𝑘Gen‘𝐽) ∧ 𝑦 ∈ (𝑘Gen‘𝐽))) → ((𝑥𝑦) ∈ (𝑘Gen‘𝐽) ↔ ((𝑥𝑦) ⊆ 𝑋 ∧ ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → ((𝑥𝑦) ∩ 𝑘) ∈ (𝐽t 𝑘)))))
7357, 70, 72mpbir2and 977 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑥 ∈ (𝑘Gen‘𝐽) ∧ 𝑦 ∈ (𝑘Gen‘𝐽))) → (𝑥𝑦) ∈ (𝑘Gen‘𝐽))
7473ralrimivva 3000 . . 3 (𝐽 ∈ (TopOn‘𝑋) → ∀𝑥 ∈ (𝑘Gen‘𝐽)∀𝑦 ∈ (𝑘Gen‘𝐽)(𝑥𝑦) ∈ (𝑘Gen‘𝐽))
75 fvex 6239 . . . 4 (𝑘Gen‘𝐽) ∈ V
76 istopg 20748 . . . 4 ((𝑘Gen‘𝐽) ∈ V → ((𝑘Gen‘𝐽) ∈ Top ↔ (∀𝑥(𝑥 ⊆ (𝑘Gen‘𝐽) → 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ ∀𝑥 ∈ (𝑘Gen‘𝐽)∀𝑦 ∈ (𝑘Gen‘𝐽)(𝑥𝑦) ∈ (𝑘Gen‘𝐽))))
7775, 76ax-mp 5 . . 3 ((𝑘Gen‘𝐽) ∈ Top ↔ (∀𝑥(𝑥 ⊆ (𝑘Gen‘𝐽) → 𝑥 ∈ (𝑘Gen‘𝐽)) ∧ ∀𝑥 ∈ (𝑘Gen‘𝐽)∀𝑦 ∈ (𝑘Gen‘𝐽)(𝑥𝑦) ∈ (𝑘Gen‘𝐽)))
7832, 74, 77sylanbrc 699 . 2 (𝐽 ∈ (TopOn‘𝑋) → (𝑘Gen‘𝐽) ∈ Top)
79 istopon 20765 . 2 ((𝑘Gen‘𝐽) ∈ (TopOn‘𝑋) ↔ ((𝑘Gen‘𝐽) ∈ Top ∧ 𝑋 = (𝑘Gen‘𝐽)))
8078, 54, 79sylanbrc 699 1 (𝐽 ∈ (TopOn‘𝑋) → (𝑘Gen‘𝐽) ∈ (TopOn‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  wal 1521   = wceq 1523  wcel 2030  wral 2941  {crab 2945  Vcvv 3231  cin 3606  wss 3607  𝒫 cpw 4191   cuni 4468   ciun 4552  cfv 5926  (class class class)co 6690  t crest 16128  Topctop 20746  TopOnctopon 20763  Compccmp 21237  𝑘Genckgen 21384
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-oadd 7609  df-er 7787  df-en 7998  df-fin 8001  df-fi 8358  df-rest 16130  df-topgen 16151  df-top 20747  df-topon 20764  df-bases 20798  df-cmp 21238  df-kgen 21385
This theorem is referenced by:  kgenuni  21390  kgenftop  21391  kgenhaus  21395  kgenidm  21398  kgencn  21407  kgencn3  21409  kgen2cn  21410
  Copyright terms: Public domain W3C validator