![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > keepel | Structured version Visualization version GIF version |
Description: Keep a membership hypothesis for weak deduction theorem, when special case 𝐵 ∈ 𝐶 is provable. (Contributed by NM, 14-Aug-1999.) |
Ref | Expression |
---|---|
keepel.1 | ⊢ 𝐴 ∈ 𝐶 |
keepel.2 | ⊢ 𝐵 ∈ 𝐶 |
Ref | Expression |
---|---|
keepel | ⊢ if(𝜑, 𝐴, 𝐵) ∈ 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2825 | . 2 ⊢ (𝐴 = if(𝜑, 𝐴, 𝐵) → (𝐴 ∈ 𝐶 ↔ if(𝜑, 𝐴, 𝐵) ∈ 𝐶)) | |
2 | eleq1 2825 | . 2 ⊢ (𝐵 = if(𝜑, 𝐴, 𝐵) → (𝐵 ∈ 𝐶 ↔ if(𝜑, 𝐴, 𝐵) ∈ 𝐶)) | |
3 | keepel.1 | . 2 ⊢ 𝐴 ∈ 𝐶 | |
4 | keepel.2 | . 2 ⊢ 𝐵 ∈ 𝐶 | |
5 | 1, 2, 3, 4 | keephyp 4294 | 1 ⊢ if(𝜑, 𝐴, 𝐵) ∈ 𝐶 |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2137 ifcif 4228 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1986 ax-6 2052 ax-7 2088 ax-9 2146 ax-10 2166 ax-11 2181 ax-12 2194 ax-13 2389 ax-ext 2738 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2045 df-clab 2745 df-cleq 2751 df-clel 2754 df-if 4229 |
This theorem is referenced by: ifex 4298 xaddf 12246 sadcf 15375 ramcl 15933 setcepi 16937 abvtrivd 19040 mvrf1 19625 mplcoe3 19666 psrbagsn 19695 evlslem1 19715 marep01ma 20666 dscmet 22576 dscopn 22577 i1f1lem 23653 i1f1 23654 itg2const 23704 cxpval 24607 cxpcl 24617 recxpcl 24618 sqff1o 25105 chtublem 25133 dchrmulid2 25174 bposlem1 25206 lgsval 25223 lgsfcl2 25225 lgscllem 25226 lgsval2lem 25229 lgsneg 25243 lgsdilem 25246 lgsdir2 25252 lgsdir 25254 lgsdi 25256 lgsne0 25257 dchrisum0flblem1 25394 dchrisum0flblem2 25395 dchrisum0fno1 25397 rpvmasum2 25398 omlsi 28570 sgnsf 30036 psgnfzto1stlem 30157 indfval 30385 ddemeas 30606 eulerpartlemb 30737 eulerpartlemgs2 30749 sqdivzi 31915 poimirlem16 33736 poimirlem19 33739 pw2f1ocnv 38104 flcidc 38244 arearect 38301 ifcli 39826 sqwvfourb 40947 fouriersw 40949 hspval 41327 |
Copyright terms: Public domain | W3C validator |