![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > kbfval | Structured version Visualization version GIF version |
Description: The outer product of two vectors, expressed as ∣ 𝐴〉 〈𝐵 ∣ in Dirac notation. See df-kb 29015. (Contributed by NM, 15-May-2006.) (Revised by Mario Carneiro, 23-Aug-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
kbfval | ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 ketbra 𝐵) = (𝑥 ∈ ℋ ↦ ((𝑥 ·ih 𝐵) ·ℎ 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 6817 | . . 3 ⊢ (𝑦 = 𝐴 → ((𝑥 ·ih 𝑧) ·ℎ 𝑦) = ((𝑥 ·ih 𝑧) ·ℎ 𝐴)) | |
2 | 1 | mpteq2dv 4893 | . 2 ⊢ (𝑦 = 𝐴 → (𝑥 ∈ ℋ ↦ ((𝑥 ·ih 𝑧) ·ℎ 𝑦)) = (𝑥 ∈ ℋ ↦ ((𝑥 ·ih 𝑧) ·ℎ 𝐴))) |
3 | oveq2 6817 | . . . 4 ⊢ (𝑧 = 𝐵 → (𝑥 ·ih 𝑧) = (𝑥 ·ih 𝐵)) | |
4 | 3 | oveq1d 6824 | . . 3 ⊢ (𝑧 = 𝐵 → ((𝑥 ·ih 𝑧) ·ℎ 𝐴) = ((𝑥 ·ih 𝐵) ·ℎ 𝐴)) |
5 | 4 | mpteq2dv 4893 | . 2 ⊢ (𝑧 = 𝐵 → (𝑥 ∈ ℋ ↦ ((𝑥 ·ih 𝑧) ·ℎ 𝐴)) = (𝑥 ∈ ℋ ↦ ((𝑥 ·ih 𝐵) ·ℎ 𝐴))) |
6 | df-kb 29015 | . 2 ⊢ ketbra = (𝑦 ∈ ℋ, 𝑧 ∈ ℋ ↦ (𝑥 ∈ ℋ ↦ ((𝑥 ·ih 𝑧) ·ℎ 𝑦))) | |
7 | ax-hilex 28161 | . . 3 ⊢ ℋ ∈ V | |
8 | 7 | mptex 6646 | . 2 ⊢ (𝑥 ∈ ℋ ↦ ((𝑥 ·ih 𝐵) ·ℎ 𝐴)) ∈ V |
9 | 2, 5, 6, 8 | ovmpt2 6957 | 1 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 ketbra 𝐵) = (𝑥 ∈ ℋ ↦ ((𝑥 ·ih 𝐵) ·ℎ 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1628 ∈ wcel 2135 ↦ cmpt 4877 (class class class)co 6809 ℋchil 28081 ·ℎ csm 28083 ·ih csp 28084 ketbra ck 28119 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1867 ax-4 1882 ax-5 1984 ax-6 2050 ax-7 2086 ax-9 2144 ax-10 2164 ax-11 2179 ax-12 2192 ax-13 2387 ax-ext 2736 ax-rep 4919 ax-sep 4929 ax-nul 4937 ax-pr 5051 ax-hilex 28161 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1631 df-ex 1850 df-nf 1855 df-sb 2043 df-eu 2607 df-mo 2608 df-clab 2743 df-cleq 2749 df-clel 2752 df-nfc 2887 df-ne 2929 df-ral 3051 df-rex 3052 df-reu 3053 df-rab 3055 df-v 3338 df-sbc 3573 df-csb 3671 df-dif 3714 df-un 3716 df-in 3718 df-ss 3725 df-nul 4055 df-if 4227 df-sn 4318 df-pr 4320 df-op 4324 df-uni 4585 df-iun 4670 df-br 4801 df-opab 4861 df-mpt 4878 df-id 5170 df-xp 5268 df-rel 5269 df-cnv 5270 df-co 5271 df-dm 5272 df-rn 5273 df-res 5274 df-ima 5275 df-iota 6008 df-fun 6047 df-fn 6048 df-f 6049 df-f1 6050 df-fo 6051 df-f1o 6052 df-fv 6053 df-ov 6812 df-oprab 6813 df-mpt2 6814 df-kb 29015 |
This theorem is referenced by: kbop 29117 kbval 29118 kbmul 29119 |
Copyright terms: Public domain | W3C validator |