![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > kardex | Structured version Visualization version GIF version |
Description: The collection of all sets equinumerous to a set 𝐴 and having the least possible rank is a set. This is the part of the justification of the definition of kard of [Enderton] p. 222. (Contributed by NM, 14-Dec-2003.) |
Ref | Expression |
---|---|
kardex | ⊢ {𝑥 ∣ (𝑥 ≈ 𝐴 ∧ ∀𝑦(𝑦 ≈ 𝐴 → (rank‘𝑥) ⊆ (rank‘𝑦)))} ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rab 3059 | . . 3 ⊢ {𝑥 ∈ {𝑧 ∣ 𝑧 ≈ 𝐴} ∣ ∀𝑦 ∈ {𝑧 ∣ 𝑧 ≈ 𝐴} (rank‘𝑥) ⊆ (rank‘𝑦)} = {𝑥 ∣ (𝑥 ∈ {𝑧 ∣ 𝑧 ≈ 𝐴} ∧ ∀𝑦 ∈ {𝑧 ∣ 𝑧 ≈ 𝐴} (rank‘𝑥) ⊆ (rank‘𝑦))} | |
2 | vex 3343 | . . . . . 6 ⊢ 𝑥 ∈ V | |
3 | breq1 4807 | . . . . . 6 ⊢ (𝑧 = 𝑥 → (𝑧 ≈ 𝐴 ↔ 𝑥 ≈ 𝐴)) | |
4 | 2, 3 | elab 3490 | . . . . 5 ⊢ (𝑥 ∈ {𝑧 ∣ 𝑧 ≈ 𝐴} ↔ 𝑥 ≈ 𝐴) |
5 | breq1 4807 | . . . . . 6 ⊢ (𝑧 = 𝑦 → (𝑧 ≈ 𝐴 ↔ 𝑦 ≈ 𝐴)) | |
6 | 5 | ralab 3508 | . . . . 5 ⊢ (∀𝑦 ∈ {𝑧 ∣ 𝑧 ≈ 𝐴} (rank‘𝑥) ⊆ (rank‘𝑦) ↔ ∀𝑦(𝑦 ≈ 𝐴 → (rank‘𝑥) ⊆ (rank‘𝑦))) |
7 | 4, 6 | anbi12i 735 | . . . 4 ⊢ ((𝑥 ∈ {𝑧 ∣ 𝑧 ≈ 𝐴} ∧ ∀𝑦 ∈ {𝑧 ∣ 𝑧 ≈ 𝐴} (rank‘𝑥) ⊆ (rank‘𝑦)) ↔ (𝑥 ≈ 𝐴 ∧ ∀𝑦(𝑦 ≈ 𝐴 → (rank‘𝑥) ⊆ (rank‘𝑦)))) |
8 | 7 | abbii 2877 | . . 3 ⊢ {𝑥 ∣ (𝑥 ∈ {𝑧 ∣ 𝑧 ≈ 𝐴} ∧ ∀𝑦 ∈ {𝑧 ∣ 𝑧 ≈ 𝐴} (rank‘𝑥) ⊆ (rank‘𝑦))} = {𝑥 ∣ (𝑥 ≈ 𝐴 ∧ ∀𝑦(𝑦 ≈ 𝐴 → (rank‘𝑥) ⊆ (rank‘𝑦)))} |
9 | 1, 8 | eqtri 2782 | . 2 ⊢ {𝑥 ∈ {𝑧 ∣ 𝑧 ≈ 𝐴} ∣ ∀𝑦 ∈ {𝑧 ∣ 𝑧 ≈ 𝐴} (rank‘𝑥) ⊆ (rank‘𝑦)} = {𝑥 ∣ (𝑥 ≈ 𝐴 ∧ ∀𝑦(𝑦 ≈ 𝐴 → (rank‘𝑥) ⊆ (rank‘𝑦)))} |
10 | scottex 8921 | . 2 ⊢ {𝑥 ∈ {𝑧 ∣ 𝑧 ≈ 𝐴} ∣ ∀𝑦 ∈ {𝑧 ∣ 𝑧 ≈ 𝐴} (rank‘𝑥) ⊆ (rank‘𝑦)} ∈ V | |
11 | 9, 10 | eqeltrri 2836 | 1 ⊢ {𝑥 ∣ (𝑥 ≈ 𝐴 ∧ ∀𝑦(𝑦 ≈ 𝐴 → (rank‘𝑥) ⊆ (rank‘𝑦)))} ∈ V |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∀wal 1630 ∈ wcel 2139 {cab 2746 ∀wral 3050 {crab 3054 Vcvv 3340 ⊆ wss 3715 class class class wbr 4804 ‘cfv 6049 ≈ cen 8118 rankcrnk 8799 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 ax-reg 8662 ax-inf2 8711 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-reu 3057 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-int 4628 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-om 7231 df-wrecs 7576 df-recs 7637 df-rdg 7675 df-r1 8800 df-rank 8801 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |