![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > k0004lem2 | Structured version Visualization version GIF version |
Description: A mapping with a particular restricted range is also a mapping to that range. (Contributed by RP, 1-Apr-2021.) |
Ref | Expression |
---|---|
k0004lem2 | ⊢ ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ⊆ 𝐵) → ((𝐹 ∈ (𝐵 ↑𝑚 𝐴) ∧ (𝐹 “ 𝐴) ⊆ 𝐶) ↔ 𝐹 ∈ (𝐶 ↑𝑚 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp3 1132 | . . 3 ⊢ ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ⊆ 𝐵) → 𝐶 ⊆ 𝐵) | |
2 | sseqin2 3952 | . . . . 5 ⊢ (𝐶 ⊆ 𝐵 ↔ (𝐵 ∩ 𝐶) = 𝐶) | |
3 | 2 | biimpi 206 | . . . 4 ⊢ (𝐶 ⊆ 𝐵 → (𝐵 ∩ 𝐶) = 𝐶) |
4 | 3 | eqcomd 2758 | . . 3 ⊢ (𝐶 ⊆ 𝐵 → 𝐶 = (𝐵 ∩ 𝐶)) |
5 | k0004lem1 38939 | . . 3 ⊢ (𝐶 = (𝐵 ∩ 𝐶) → ((𝐹:𝐴⟶𝐵 ∧ (𝐹 “ 𝐴) ⊆ 𝐶) ↔ 𝐹:𝐴⟶𝐶)) | |
6 | 1, 4, 5 | 3syl 18 | . 2 ⊢ ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ⊆ 𝐵) → ((𝐹:𝐴⟶𝐵 ∧ (𝐹 “ 𝐴) ⊆ 𝐶) ↔ 𝐹:𝐴⟶𝐶)) |
7 | simp2 1131 | . . . 4 ⊢ ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ⊆ 𝐵) → 𝐵 ∈ 𝑉) | |
8 | simp1 1130 | . . . 4 ⊢ ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ⊆ 𝐵) → 𝐴 ∈ 𝑈) | |
9 | 7, 8 | elmapd 8029 | . . 3 ⊢ ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ⊆ 𝐵) → (𝐹 ∈ (𝐵 ↑𝑚 𝐴) ↔ 𝐹:𝐴⟶𝐵)) |
10 | 9 | anbi1d 743 | . 2 ⊢ ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ⊆ 𝐵) → ((𝐹 ∈ (𝐵 ↑𝑚 𝐴) ∧ (𝐹 “ 𝐴) ⊆ 𝐶) ↔ (𝐹:𝐴⟶𝐵 ∧ (𝐹 “ 𝐴) ⊆ 𝐶))) |
11 | 7, 1 | ssexd 4949 | . . 3 ⊢ ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ⊆ 𝐵) → 𝐶 ∈ V) |
12 | 11, 8 | elmapd 8029 | . 2 ⊢ ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ⊆ 𝐵) → (𝐹 ∈ (𝐶 ↑𝑚 𝐴) ↔ 𝐹:𝐴⟶𝐶)) |
13 | 6, 10, 12 | 3bitr4d 300 | 1 ⊢ ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ⊆ 𝐵) → ((𝐹 ∈ (𝐵 ↑𝑚 𝐴) ∧ (𝐹 “ 𝐴) ⊆ 𝐶) ↔ 𝐹 ∈ (𝐶 ↑𝑚 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 ∧ w3a 1072 = wceq 1624 ∈ wcel 2131 Vcvv 3332 ∩ cin 3706 ⊆ wss 3707 “ cima 5261 ⟶wf 6037 (class class class)co 6805 ↑𝑚 cmap 8015 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1863 ax-4 1878 ax-5 1980 ax-6 2046 ax-7 2082 ax-8 2133 ax-9 2140 ax-10 2160 ax-11 2175 ax-12 2188 ax-13 2383 ax-ext 2732 ax-sep 4925 ax-nul 4933 ax-pow 4984 ax-pr 5047 ax-un 7106 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1627 df-ex 1846 df-nf 1851 df-sb 2039 df-eu 2603 df-mo 2604 df-clab 2739 df-cleq 2745 df-clel 2748 df-nfc 2883 df-ral 3047 df-rex 3048 df-rab 3051 df-v 3334 df-sbc 3569 df-dif 3710 df-un 3712 df-in 3714 df-ss 3721 df-nul 4051 df-if 4223 df-pw 4296 df-sn 4314 df-pr 4316 df-op 4320 df-uni 4581 df-br 4797 df-opab 4857 df-id 5166 df-xp 5264 df-rel 5265 df-cnv 5266 df-co 5267 df-dm 5268 df-rn 5269 df-res 5270 df-ima 5271 df-iota 6004 df-fun 6043 df-fn 6044 df-f 6045 df-fv 6049 df-ov 6808 df-oprab 6809 df-mpt2 6810 df-map 8017 |
This theorem is referenced by: k0004lem3 38941 |
Copyright terms: Public domain | W3C validator |