![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > jumpncnp | Structured version Visualization version GIF version |
Description: Jump discontinuity or discontinuity of the first kind: if the left and the right limit don't match, the function is discontinuous at the point. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
jumpncnp.k | ⊢ 𝐾 = (TopOpen‘ℂfld) |
jumpncnp.a | ⊢ (𝜑 → 𝐴 ⊆ ℝ) |
jumpncnp.3 | ⊢ 𝐽 = (topGen‘ran (,)) |
jumpncnp.f | ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) |
jumpncnp.b | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
jumpncnp.lpt1 | ⊢ (𝜑 → 𝐵 ∈ ((limPt‘𝐽)‘(𝐴 ∩ (-∞(,)𝐵)))) |
jumpncnp.lpt2 | ⊢ (𝜑 → 𝐵 ∈ ((limPt‘𝐽)‘(𝐴 ∩ (𝐵(,)+∞)))) |
jumpncnp.8 | ⊢ (𝜑 → 𝐿 ∈ ((𝐹 ↾ (-∞(,)𝐵)) limℂ 𝐵)) |
jumpncnp.9 | ⊢ (𝜑 → 𝑅 ∈ ((𝐹 ↾ (𝐵(,)+∞)) limℂ 𝐵)) |
jumpncnp.lner | ⊢ (𝜑 → 𝐿 ≠ 𝑅) |
Ref | Expression |
---|---|
jumpncnp | ⊢ (𝜑 → ¬ 𝐹 ∈ ((𝐽 CnP (TopOpen‘ℂfld))‘𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | jumpncnp.k | . . . . 5 ⊢ 𝐾 = (TopOpen‘ℂfld) | |
2 | jumpncnp.a | . . . . 5 ⊢ (𝜑 → 𝐴 ⊆ ℝ) | |
3 | jumpncnp.3 | . . . . 5 ⊢ 𝐽 = (topGen‘ran (,)) | |
4 | jumpncnp.f | . . . . 5 ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) | |
5 | jumpncnp.lpt1 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ ((limPt‘𝐽)‘(𝐴 ∩ (-∞(,)𝐵)))) | |
6 | jumpncnp.lpt2 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ ((limPt‘𝐽)‘(𝐴 ∩ (𝐵(,)+∞)))) | |
7 | jumpncnp.8 | . . . . 5 ⊢ (𝜑 → 𝐿 ∈ ((𝐹 ↾ (-∞(,)𝐵)) limℂ 𝐵)) | |
8 | jumpncnp.9 | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ ((𝐹 ↾ (𝐵(,)+∞)) limℂ 𝐵)) | |
9 | jumpncnp.lner | . . . . 5 ⊢ (𝜑 → 𝐿 ≠ 𝑅) | |
10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | limclner 40405 | . . . 4 ⊢ (𝜑 → (𝐹 limℂ 𝐵) = ∅) |
11 | ne0i 4065 | . . . . 5 ⊢ ((𝐹‘𝐵) ∈ (𝐹 limℂ 𝐵) → (𝐹 limℂ 𝐵) ≠ ∅) | |
12 | 11 | necon2bi 2963 | . . . 4 ⊢ ((𝐹 limℂ 𝐵) = ∅ → ¬ (𝐹‘𝐵) ∈ (𝐹 limℂ 𝐵)) |
13 | 10, 12 | syl 17 | . . 3 ⊢ (𝜑 → ¬ (𝐹‘𝐵) ∈ (𝐹 limℂ 𝐵)) |
14 | 13 | intnand 1000 | . 2 ⊢ (𝜑 → ¬ (𝐹:ℝ⟶ℂ ∧ (𝐹‘𝐵) ∈ (𝐹 limℂ 𝐵))) |
15 | ax-resscn 10206 | . . 3 ⊢ ℝ ⊆ ℂ | |
16 | jumpncnp.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
17 | eqid 2761 | . . . 4 ⊢ (TopOpen‘ℂfld) = (TopOpen‘ℂfld) | |
18 | 17 | tgioo2 22828 | . . . . 5 ⊢ (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ) |
19 | 3, 18 | eqtri 2783 | . . . 4 ⊢ 𝐽 = ((TopOpen‘ℂfld) ↾t ℝ) |
20 | 17, 19 | cnplimc 23871 | . . 3 ⊢ ((ℝ ⊆ ℂ ∧ 𝐵 ∈ ℝ) → (𝐹 ∈ ((𝐽 CnP (TopOpen‘ℂfld))‘𝐵) ↔ (𝐹:ℝ⟶ℂ ∧ (𝐹‘𝐵) ∈ (𝐹 limℂ 𝐵)))) |
21 | 15, 16, 20 | sylancr 698 | . 2 ⊢ (𝜑 → (𝐹 ∈ ((𝐽 CnP (TopOpen‘ℂfld))‘𝐵) ↔ (𝐹:ℝ⟶ℂ ∧ (𝐹‘𝐵) ∈ (𝐹 limℂ 𝐵)))) |
22 | 14, 21 | mtbird 314 | 1 ⊢ (𝜑 → ¬ 𝐹 ∈ ((𝐽 CnP (TopOpen‘ℂfld))‘𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1632 ∈ wcel 2140 ≠ wne 2933 ∩ cin 3715 ⊆ wss 3716 ∅c0 4059 ran crn 5268 ↾ cres 5269 ⟶wf 6046 ‘cfv 6050 (class class class)co 6815 ℂcc 10147 ℝcr 10148 +∞cpnf 10284 -∞cmnf 10285 (,)cioo 12389 ↾t crest 16304 TopOpenctopn 16305 topGenctg 16321 ℂfldccnfld 19969 limPtclp 21161 CnP ccnp 21252 limℂ climc 23846 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-8 2142 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 ax-rep 4924 ax-sep 4934 ax-nul 4942 ax-pow 4993 ax-pr 5056 ax-un 7116 ax-cnex 10205 ax-resscn 10206 ax-1cn 10207 ax-icn 10208 ax-addcl 10209 ax-addrcl 10210 ax-mulcl 10211 ax-mulrcl 10212 ax-mulcom 10213 ax-addass 10214 ax-mulass 10215 ax-distr 10216 ax-i2m1 10217 ax-1ne0 10218 ax-1rid 10219 ax-rnegex 10220 ax-rrecex 10221 ax-cnre 10222 ax-pre-lttri 10223 ax-pre-lttrn 10224 ax-pre-ltadd 10225 ax-pre-mulgt0 10226 ax-pre-sup 10227 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2048 df-eu 2612 df-mo 2613 df-clab 2748 df-cleq 2754 df-clel 2757 df-nfc 2892 df-ne 2934 df-nel 3037 df-ral 3056 df-rex 3057 df-reu 3058 df-rmo 3059 df-rab 3060 df-v 3343 df-sbc 3578 df-csb 3676 df-dif 3719 df-un 3721 df-in 3723 df-ss 3730 df-pss 3732 df-nul 4060 df-if 4232 df-pw 4305 df-sn 4323 df-pr 4325 df-tp 4327 df-op 4329 df-uni 4590 df-int 4629 df-iun 4675 df-iin 4676 df-br 4806 df-opab 4866 df-mpt 4883 df-tr 4906 df-id 5175 df-eprel 5180 df-po 5188 df-so 5189 df-fr 5226 df-we 5228 df-xp 5273 df-rel 5274 df-cnv 5275 df-co 5276 df-dm 5277 df-rn 5278 df-res 5279 df-ima 5280 df-pred 5842 df-ord 5888 df-on 5889 df-lim 5890 df-suc 5891 df-iota 6013 df-fun 6052 df-fn 6053 df-f 6054 df-f1 6055 df-fo 6056 df-f1o 6057 df-fv 6058 df-riota 6776 df-ov 6818 df-oprab 6819 df-mpt2 6820 df-om 7233 df-1st 7335 df-2nd 7336 df-wrecs 7578 df-recs 7639 df-rdg 7677 df-1o 7731 df-oadd 7735 df-er 7914 df-map 8028 df-pm 8029 df-en 8125 df-dom 8126 df-sdom 8127 df-fin 8128 df-fi 8485 df-sup 8516 df-inf 8517 df-pnf 10289 df-mnf 10290 df-xr 10291 df-ltxr 10292 df-le 10293 df-sub 10481 df-neg 10482 df-div 10898 df-nn 11234 df-2 11292 df-3 11293 df-4 11294 df-5 11295 df-6 11296 df-7 11297 df-8 11298 df-9 11299 df-n0 11506 df-z 11591 df-dec 11707 df-uz 11901 df-q 12003 df-rp 12047 df-xneg 12160 df-xadd 12161 df-xmul 12162 df-ioo 12393 df-fz 12541 df-seq 13017 df-exp 13076 df-cj 14059 df-re 14060 df-im 14061 df-sqrt 14195 df-abs 14196 df-struct 16082 df-ndx 16083 df-slot 16084 df-base 16086 df-plusg 16177 df-mulr 16178 df-starv 16179 df-tset 16183 df-ple 16184 df-ds 16187 df-unif 16188 df-rest 16306 df-topn 16307 df-topgen 16327 df-psmet 19961 df-xmet 19962 df-met 19963 df-bl 19964 df-mopn 19965 df-cnfld 19970 df-top 20922 df-topon 20939 df-topsp 20960 df-bases 20973 df-cld 21046 df-ntr 21047 df-cls 21048 df-nei 21125 df-lp 21163 df-cnp 21255 df-xms 22347 df-ms 22348 df-limc 23850 |
This theorem is referenced by: fouriersw 40970 |
Copyright terms: Public domain | W3C validator |