MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  joinval2 Structured version   Visualization version   GIF version

Theorem joinval2 17056
Description: Value of join for a poset with LUB expanded. (Contributed by NM, 16-Sep-2011.) (Revised by NM, 11-Sep-2018.)
Hypotheses
Ref Expression
joinval2.b 𝐵 = (Base‘𝐾)
joinval2.l = (le‘𝐾)
joinval2.j = (join‘𝐾)
joinval2.k (𝜑𝐾𝑉)
joinval2.x (𝜑𝑋𝐵)
joinval2.y (𝜑𝑌𝐵)
Assertion
Ref Expression
joinval2 (𝜑 → (𝑋 𝑌) = (𝑥𝐵 ((𝑋 𝑥𝑌 𝑥) ∧ ∀𝑧𝐵 ((𝑋 𝑧𝑌 𝑧) → 𝑥 𝑧))))
Distinct variable groups:   𝑥,𝑧,𝐵   𝑥, ,𝑧   𝑥,𝐾,𝑧   𝑥,𝑋,𝑧   𝑥,𝑌,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑧)   (𝑥,𝑧)   𝑉(𝑥,𝑧)

Proof of Theorem joinval2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eqid 2651 . . 3 (lub‘𝐾) = (lub‘𝐾)
2 joinval2.j . . 3 = (join‘𝐾)
3 joinval2.k . . 3 (𝜑𝐾𝑉)
4 joinval2.x . . 3 (𝜑𝑋𝐵)
5 joinval2.y . . 3 (𝜑𝑌𝐵)
61, 2, 3, 4, 5joinval 17052 . 2 (𝜑 → (𝑋 𝑌) = ((lub‘𝐾)‘{𝑋, 𝑌}))
7 joinval2.b . . 3 𝐵 = (Base‘𝐾)
8 joinval2.l . . 3 = (le‘𝐾)
9 biid 251 . . 3 ((∀𝑦 ∈ {𝑋, 𝑌}𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦 ∈ {𝑋, 𝑌}𝑦 𝑧𝑥 𝑧)) ↔ (∀𝑦 ∈ {𝑋, 𝑌}𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦 ∈ {𝑋, 𝑌}𝑦 𝑧𝑥 𝑧)))
10 prssi 4385 . . . 4 ((𝑋𝐵𝑌𝐵) → {𝑋, 𝑌} ⊆ 𝐵)
114, 5, 10syl2anc 694 . . 3 (𝜑 → {𝑋, 𝑌} ⊆ 𝐵)
127, 8, 1, 9, 3, 11lubval 17031 . 2 (𝜑 → ((lub‘𝐾)‘{𝑋, 𝑌}) = (𝑥𝐵 (∀𝑦 ∈ {𝑋, 𝑌}𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦 ∈ {𝑋, 𝑌}𝑦 𝑧𝑥 𝑧))))
137, 8, 2, 3, 4, 5joinval2lem 17055 . . . 4 ((𝑋𝐵𝑌𝐵) → ((∀𝑦 ∈ {𝑋, 𝑌}𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦 ∈ {𝑋, 𝑌}𝑦 𝑧𝑥 𝑧)) ↔ ((𝑋 𝑥𝑌 𝑥) ∧ ∀𝑧𝐵 ((𝑋 𝑧𝑌 𝑧) → 𝑥 𝑧))))
1413riotabidv 6653 . . 3 ((𝑋𝐵𝑌𝐵) → (𝑥𝐵 (∀𝑦 ∈ {𝑋, 𝑌}𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦 ∈ {𝑋, 𝑌}𝑦 𝑧𝑥 𝑧))) = (𝑥𝐵 ((𝑋 𝑥𝑌 𝑥) ∧ ∀𝑧𝐵 ((𝑋 𝑧𝑌 𝑧) → 𝑥 𝑧))))
154, 5, 14syl2anc 694 . 2 (𝜑 → (𝑥𝐵 (∀𝑦 ∈ {𝑋, 𝑌}𝑦 𝑥 ∧ ∀𝑧𝐵 (∀𝑦 ∈ {𝑋, 𝑌}𝑦 𝑧𝑥 𝑧))) = (𝑥𝐵 ((𝑋 𝑥𝑌 𝑥) ∧ ∀𝑧𝐵 ((𝑋 𝑧𝑌 𝑧) → 𝑥 𝑧))))
166, 12, 153eqtrd 2689 1 (𝜑 → (𝑋 𝑌) = (𝑥𝐵 ((𝑋 𝑥𝑌 𝑥) ∧ ∀𝑧𝐵 ((𝑋 𝑧𝑌 𝑧) → 𝑥 𝑧))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1523  wcel 2030  wral 2941  wss 3607  {cpr 4212   class class class wbr 4685  cfv 5926  crio 6650  (class class class)co 6690  Basecbs 15904  lecple 15995  lubclub 16989  joincjn 16991
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-lub 17021  df-join 17023
This theorem is referenced by:  joinlem  17058
  Copyright terms: Public domain W3C validator