![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > joincl | Structured version Visualization version GIF version |
Description: Closure of join of elements in the domain. (Contributed by NM, 12-Sep-2018.) |
Ref | Expression |
---|---|
joincl.b | ⊢ 𝐵 = (Base‘𝐾) |
joincl.j | ⊢ ∨ = (join‘𝐾) |
joincl.k | ⊢ (𝜑 → 𝐾 ∈ 𝑉) |
joincl.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
joincl.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
joincl.e | ⊢ (𝜑 → 〈𝑋, 𝑌〉 ∈ dom ∨ ) |
Ref | Expression |
---|---|
joincl | ⊢ (𝜑 → (𝑋 ∨ 𝑌) ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2771 | . . 3 ⊢ (lub‘𝐾) = (lub‘𝐾) | |
2 | joincl.j | . . 3 ⊢ ∨ = (join‘𝐾) | |
3 | joincl.k | . . 3 ⊢ (𝜑 → 𝐾 ∈ 𝑉) | |
4 | joincl.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
5 | joincl.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
6 | 1, 2, 3, 4, 5 | joinval 17213 | . 2 ⊢ (𝜑 → (𝑋 ∨ 𝑌) = ((lub‘𝐾)‘{𝑋, 𝑌})) |
7 | joincl.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
8 | joincl.e | . . . 4 ⊢ (𝜑 → 〈𝑋, 𝑌〉 ∈ dom ∨ ) | |
9 | 1, 2, 3, 4, 5 | joindef 17212 | . . . 4 ⊢ (𝜑 → (〈𝑋, 𝑌〉 ∈ dom ∨ ↔ {𝑋, 𝑌} ∈ dom (lub‘𝐾))) |
10 | 8, 9 | mpbid 222 | . . 3 ⊢ (𝜑 → {𝑋, 𝑌} ∈ dom (lub‘𝐾)) |
11 | 7, 1, 3, 10 | lubcl 17193 | . 2 ⊢ (𝜑 → ((lub‘𝐾)‘{𝑋, 𝑌}) ∈ 𝐵) |
12 | 6, 11 | eqeltrd 2850 | 1 ⊢ (𝜑 → (𝑋 ∨ 𝑌) ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1631 ∈ wcel 2145 {cpr 4318 〈cop 4322 dom cdm 5249 ‘cfv 6031 (class class class)co 6793 Basecbs 16064 lubclub 17150 joincjn 17152 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4904 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-op 4323 df-uni 4575 df-iun 4656 df-br 4787 df-opab 4847 df-mpt 4864 df-id 5157 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6754 df-ov 6796 df-oprab 6797 df-lub 17182 df-join 17184 |
This theorem is referenced by: joinle 17222 latlem 17257 |
Copyright terms: Public domain | W3C validator |