MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  joincl Structured version   Visualization version   GIF version

Theorem joincl 17214
Description: Closure of join of elements in the domain. (Contributed by NM, 12-Sep-2018.)
Hypotheses
Ref Expression
joincl.b 𝐵 = (Base‘𝐾)
joincl.j = (join‘𝐾)
joincl.k (𝜑𝐾𝑉)
joincl.x (𝜑𝑋𝐵)
joincl.y (𝜑𝑌𝐵)
joincl.e (𝜑 → ⟨𝑋, 𝑌⟩ ∈ dom )
Assertion
Ref Expression
joincl (𝜑 → (𝑋 𝑌) ∈ 𝐵)

Proof of Theorem joincl
StepHypRef Expression
1 eqid 2771 . . 3 (lub‘𝐾) = (lub‘𝐾)
2 joincl.j . . 3 = (join‘𝐾)
3 joincl.k . . 3 (𝜑𝐾𝑉)
4 joincl.x . . 3 (𝜑𝑋𝐵)
5 joincl.y . . 3 (𝜑𝑌𝐵)
61, 2, 3, 4, 5joinval 17213 . 2 (𝜑 → (𝑋 𝑌) = ((lub‘𝐾)‘{𝑋, 𝑌}))
7 joincl.b . . 3 𝐵 = (Base‘𝐾)
8 joincl.e . . . 4 (𝜑 → ⟨𝑋, 𝑌⟩ ∈ dom )
91, 2, 3, 4, 5joindef 17212 . . . 4 (𝜑 → (⟨𝑋, 𝑌⟩ ∈ dom ↔ {𝑋, 𝑌} ∈ dom (lub‘𝐾)))
108, 9mpbid 222 . . 3 (𝜑 → {𝑋, 𝑌} ∈ dom (lub‘𝐾))
117, 1, 3, 10lubcl 17193 . 2 (𝜑 → ((lub‘𝐾)‘{𝑋, 𝑌}) ∈ 𝐵)
126, 11eqeltrd 2850 1 (𝜑 → (𝑋 𝑌) ∈ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1631  wcel 2145  {cpr 4318  cop 4322  dom cdm 5249  cfv 6031  (class class class)co 6793  Basecbs 16064  lubclub 17150  joincjn 17152
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-op 4323  df-uni 4575  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-id 5157  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-ov 6796  df-oprab 6797  df-lub 17182  df-join 17184
This theorem is referenced by:  joinle  17222  latlem  17257
  Copyright terms: Public domain W3C validator