Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  jm2.24nn Structured version   Visualization version   GIF version

Theorem jm2.24nn 38028
Description: X(n) is strictly greater than Y(n) + Y(n-1). Lemma 2.24 of [JonesMatijasevic] p. 697 restricted to . (Contributed by Stefan O'Rear, 3-Oct-2014.)
Assertion
Ref Expression
jm2.24nn ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → ((𝐴 Yrm (𝑁 − 1)) + (𝐴 Yrm 𝑁)) < (𝐴 Xrm 𝑁))

Proof of Theorem jm2.24nn
StepHypRef Expression
1 nnz 11591 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
2 1z 11599 . . . . . 6 1 ∈ ℤ
3 zsubcl 11611 . . . . . 6 ((𝑁 ∈ ℤ ∧ 1 ∈ ℤ) → (𝑁 − 1) ∈ ℤ)
41, 2, 3sylancl 697 . . . . 5 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℤ)
5 frmy 37981 . . . . . 6 Yrm :((ℤ‘2) × ℤ)⟶ℤ
65fovcl 6930 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ (𝑁 − 1) ∈ ℤ) → (𝐴 Yrm (𝑁 − 1)) ∈ ℤ)
74, 6sylan2 492 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (𝐴 Yrm (𝑁 − 1)) ∈ ℤ)
87zred 11674 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (𝐴 Yrm (𝑁 − 1)) ∈ ℝ)
95fovcl 6930 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm 𝑁) ∈ ℤ)
101, 9sylan2 492 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (𝐴 Yrm 𝑁) ∈ ℤ)
1110zred 11674 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (𝐴 Yrm 𝑁) ∈ ℝ)
128, 11readdcld 10261 . 2 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → ((𝐴 Yrm (𝑁 − 1)) + (𝐴 Yrm 𝑁)) ∈ ℝ)
13 2re 11282 . . . 4 2 ∈ ℝ
14 remulcl 10213 . . . 4 ((2 ∈ ℝ ∧ (𝐴 Yrm 𝑁) ∈ ℝ) → (2 · (𝐴 Yrm 𝑁)) ∈ ℝ)
1513, 11, 14sylancr 698 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (2 · (𝐴 Yrm 𝑁)) ∈ ℝ)
1615, 8resubcld 10650 . 2 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → ((2 · (𝐴 Yrm 𝑁)) − (𝐴 Yrm (𝑁 − 1))) ∈ ℝ)
17 frmx 37980 . . . . 5 Xrm :((ℤ‘2) × ℤ)⟶ℕ0
1817fovcl 6930 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm 𝑁) ∈ ℕ0)
191, 18sylan2 492 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (𝐴 Xrm 𝑁) ∈ ℕ0)
2019nn0red 11544 . 2 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (𝐴 Xrm 𝑁) ∈ ℝ)
2111, 8resubcld 10650 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → ((𝐴 Yrm 𝑁) − (𝐴 Yrm (𝑁 − 1))) ∈ ℝ)
22 remulcl 10213 . . . . . . . 8 ((2 ∈ ℝ ∧ (𝐴 Yrm (𝑁 − 1)) ∈ ℝ) → (2 · (𝐴 Yrm (𝑁 − 1))) ∈ ℝ)
2313, 8, 22sylancr 698 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (2 · (𝐴 Yrm (𝑁 − 1))) ∈ ℝ)
24 eluzelre 11890 . . . . . . . . 9 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℝ)
2524adantr 472 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → 𝐴 ∈ ℝ)
2625, 8remulcld 10262 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (𝐴 · (𝐴 Yrm (𝑁 − 1))) ∈ ℝ)
278, 25remulcld 10262 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → ((𝐴 Yrm (𝑁 − 1)) · 𝐴) ∈ ℝ)
2817fovcl 6930 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ (𝑁 − 1) ∈ ℤ) → (𝐴 Xrm (𝑁 − 1)) ∈ ℕ0)
294, 28sylan2 492 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (𝐴 Xrm (𝑁 − 1)) ∈ ℕ0)
3029nn0red 11544 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (𝐴 Xrm (𝑁 − 1)) ∈ ℝ)
3127, 30readdcld 10261 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (((𝐴 Yrm (𝑁 − 1)) · 𝐴) + (𝐴 Xrm (𝑁 − 1))) ∈ ℝ)
3213a1i 11 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → 2 ∈ ℝ)
33 nnm1nn0 11526 . . . . . . . . 9 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0)
34 rmxypos 38016 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ (𝑁 − 1) ∈ ℕ0) → (0 < (𝐴 Xrm (𝑁 − 1)) ∧ 0 ≤ (𝐴 Yrm (𝑁 − 1))))
3534simprd 482 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ (𝑁 − 1) ∈ ℕ0) → 0 ≤ (𝐴 Yrm (𝑁 − 1)))
3633, 35sylan2 492 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → 0 ≤ (𝐴 Yrm (𝑁 − 1)))
37 eluzle 11892 . . . . . . . . 9 (𝐴 ∈ (ℤ‘2) → 2 ≤ 𝐴)
3837adantr 472 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → 2 ≤ 𝐴)
3932, 25, 8, 36, 38lemul1ad 11155 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (2 · (𝐴 Yrm (𝑁 − 1))) ≤ (𝐴 · (𝐴 Yrm (𝑁 − 1))))
4025recnd 10260 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → 𝐴 ∈ ℂ)
418recnd 10260 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (𝐴 Yrm (𝑁 − 1)) ∈ ℂ)
4240, 41mulcomd 10253 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (𝐴 · (𝐴 Yrm (𝑁 − 1))) = ((𝐴 Yrm (𝑁 − 1)) · 𝐴))
4334simpld 477 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ (𝑁 − 1) ∈ ℕ0) → 0 < (𝐴 Xrm (𝑁 − 1)))
4433, 43sylan2 492 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → 0 < (𝐴 Xrm (𝑁 − 1)))
4530, 27ltaddposd 10803 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (0 < (𝐴 Xrm (𝑁 − 1)) ↔ ((𝐴 Yrm (𝑁 − 1)) · 𝐴) < (((𝐴 Yrm (𝑁 − 1)) · 𝐴) + (𝐴 Xrm (𝑁 − 1)))))
4644, 45mpbid 222 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → ((𝐴 Yrm (𝑁 − 1)) · 𝐴) < (((𝐴 Yrm (𝑁 − 1)) · 𝐴) + (𝐴 Xrm (𝑁 − 1))))
4742, 46eqbrtrd 4826 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (𝐴 · (𝐴 Yrm (𝑁 − 1))) < (((𝐴 Yrm (𝑁 − 1)) · 𝐴) + (𝐴 Xrm (𝑁 − 1))))
4823, 26, 31, 39, 47lelttrd 10387 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (2 · (𝐴 Yrm (𝑁 − 1))) < (((𝐴 Yrm (𝑁 − 1)) · 𝐴) + (𝐴 Xrm (𝑁 − 1))))
49412timesd 11467 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (2 · (𝐴 Yrm (𝑁 − 1))) = ((𝐴 Yrm (𝑁 − 1)) + (𝐴 Yrm (𝑁 − 1))))
50 rmyp1 38000 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ (𝑁 − 1) ∈ ℤ) → (𝐴 Yrm ((𝑁 − 1) + 1)) = (((𝐴 Yrm (𝑁 − 1)) · 𝐴) + (𝐴 Xrm (𝑁 − 1))))
514, 50sylan2 492 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (𝐴 Yrm ((𝑁 − 1) + 1)) = (((𝐴 Yrm (𝑁 − 1)) · 𝐴) + (𝐴 Xrm (𝑁 − 1))))
52 nnre 11219 . . . . . . . . . . 11 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
5352adantl 473 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℝ)
5453recnd 10260 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℂ)
55 ax-1cn 10186 . . . . . . . . 9 1 ∈ ℂ
56 npcan 10482 . . . . . . . . 9 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 − 1) + 1) = 𝑁)
5754, 55, 56sylancl 697 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → ((𝑁 − 1) + 1) = 𝑁)
5857oveq2d 6829 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (𝐴 Yrm ((𝑁 − 1) + 1)) = (𝐴 Yrm 𝑁))
5951, 58eqtr3d 2796 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (((𝐴 Yrm (𝑁 − 1)) · 𝐴) + (𝐴 Xrm (𝑁 − 1))) = (𝐴 Yrm 𝑁))
6048, 49, 593brtr3d 4835 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → ((𝐴 Yrm (𝑁 − 1)) + (𝐴 Yrm (𝑁 − 1))) < (𝐴 Yrm 𝑁))
618, 8, 11ltaddsubd 10819 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (((𝐴 Yrm (𝑁 − 1)) + (𝐴 Yrm (𝑁 − 1))) < (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm (𝑁 − 1)) < ((𝐴 Yrm 𝑁) − (𝐴 Yrm (𝑁 − 1)))))
6260, 61mpbid 222 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (𝐴 Yrm (𝑁 − 1)) < ((𝐴 Yrm 𝑁) − (𝐴 Yrm (𝑁 − 1))))
638, 21, 11, 62ltadd1dd 10830 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → ((𝐴 Yrm (𝑁 − 1)) + (𝐴 Yrm 𝑁)) < (((𝐴 Yrm 𝑁) − (𝐴 Yrm (𝑁 − 1))) + (𝐴 Yrm 𝑁)))
6411recnd 10260 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (𝐴 Yrm 𝑁) ∈ ℂ)
65642timesd 11467 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (2 · (𝐴 Yrm 𝑁)) = ((𝐴 Yrm 𝑁) + (𝐴 Yrm 𝑁)))
6665oveq1d 6828 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → ((2 · (𝐴 Yrm 𝑁)) − (𝐴 Yrm (𝑁 − 1))) = (((𝐴 Yrm 𝑁) + (𝐴 Yrm 𝑁)) − (𝐴 Yrm (𝑁 − 1))))
6764, 64, 41addsubd 10605 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (((𝐴 Yrm 𝑁) + (𝐴 Yrm 𝑁)) − (𝐴 Yrm (𝑁 − 1))) = (((𝐴 Yrm 𝑁) − (𝐴 Yrm (𝑁 − 1))) + (𝐴 Yrm 𝑁)))
6866, 67eqtrd 2794 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → ((2 · (𝐴 Yrm 𝑁)) − (𝐴 Yrm (𝑁 − 1))) = (((𝐴 Yrm 𝑁) − (𝐴 Yrm (𝑁 − 1))) + (𝐴 Yrm 𝑁)))
6963, 68breqtrrd 4832 . 2 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → ((𝐴 Yrm (𝑁 − 1)) + (𝐴 Yrm 𝑁)) < ((2 · (𝐴 Yrm 𝑁)) − (𝐴 Yrm (𝑁 − 1))))
7025, 11remulcld 10262 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (𝐴 · (𝐴 Yrm 𝑁)) ∈ ℝ)
71 rmy0 37996 . . . . . . . 8 (𝐴 ∈ (ℤ‘2) → (𝐴 Yrm 0) = 0)
7271adantr 472 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (𝐴 Yrm 0) = 0)
73 nngt0 11241 . . . . . . . . 9 (𝑁 ∈ ℕ → 0 < 𝑁)
7473adantl 473 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → 0 < 𝑁)
75 simpl 474 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → 𝐴 ∈ (ℤ‘2))
76 0zd 11581 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → 0 ∈ ℤ)
771adantl 473 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℤ)
78 ltrmy 38021 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 0 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0 < 𝑁 ↔ (𝐴 Yrm 0) < (𝐴 Yrm 𝑁)))
7975, 76, 77, 78syl3anc 1477 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (0 < 𝑁 ↔ (𝐴 Yrm 0) < (𝐴 Yrm 𝑁)))
8074, 79mpbid 222 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (𝐴 Yrm 0) < (𝐴 Yrm 𝑁))
8172, 80eqbrtrrd 4828 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → 0 < (𝐴 Yrm 𝑁))
82 lemul1 11067 . . . . . 6 ((2 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ ((𝐴 Yrm 𝑁) ∈ ℝ ∧ 0 < (𝐴 Yrm 𝑁))) → (2 ≤ 𝐴 ↔ (2 · (𝐴 Yrm 𝑁)) ≤ (𝐴 · (𝐴 Yrm 𝑁))))
8332, 25, 11, 81, 82syl112anc 1481 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (2 ≤ 𝐴 ↔ (2 · (𝐴 Yrm 𝑁)) ≤ (𝐴 · (𝐴 Yrm 𝑁))))
8438, 83mpbid 222 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (2 · (𝐴 Yrm 𝑁)) ≤ (𝐴 · (𝐴 Yrm 𝑁)))
8515, 70, 8, 84lesub1dd 10835 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → ((2 · (𝐴 Yrm 𝑁)) − (𝐴 Yrm (𝑁 − 1))) ≤ ((𝐴 · (𝐴 Yrm 𝑁)) − (𝐴 Yrm (𝑁 − 1))))
86 rmym1 38002 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm (𝑁 − 1)) = (((𝐴 Yrm 𝑁) · 𝐴) − (𝐴 Xrm 𝑁)))
871, 86sylan2 492 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (𝐴 Yrm (𝑁 − 1)) = (((𝐴 Yrm 𝑁) · 𝐴) − (𝐴 Xrm 𝑁)))
8864, 40mulcomd 10253 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → ((𝐴 Yrm 𝑁) · 𝐴) = (𝐴 · (𝐴 Yrm 𝑁)))
8988oveq1d 6828 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (((𝐴 Yrm 𝑁) · 𝐴) − (𝐴 Xrm 𝑁)) = ((𝐴 · (𝐴 Yrm 𝑁)) − (𝐴 Xrm 𝑁)))
9087, 89eqtr2d 2795 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → ((𝐴 · (𝐴 Yrm 𝑁)) − (𝐴 Xrm 𝑁)) = (𝐴 Yrm (𝑁 − 1)))
9170recnd 10260 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (𝐴 · (𝐴 Yrm 𝑁)) ∈ ℂ)
9220recnd 10260 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (𝐴 Xrm 𝑁) ∈ ℂ)
93 subsub23 10478 . . . . 5 (((𝐴 · (𝐴 Yrm 𝑁)) ∈ ℂ ∧ (𝐴 Xrm 𝑁) ∈ ℂ ∧ (𝐴 Yrm (𝑁 − 1)) ∈ ℂ) → (((𝐴 · (𝐴 Yrm 𝑁)) − (𝐴 Xrm 𝑁)) = (𝐴 Yrm (𝑁 − 1)) ↔ ((𝐴 · (𝐴 Yrm 𝑁)) − (𝐴 Yrm (𝑁 − 1))) = (𝐴 Xrm 𝑁)))
9491, 92, 41, 93syl3anc 1477 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → (((𝐴 · (𝐴 Yrm 𝑁)) − (𝐴 Xrm 𝑁)) = (𝐴 Yrm (𝑁 − 1)) ↔ ((𝐴 · (𝐴 Yrm 𝑁)) − (𝐴 Yrm (𝑁 − 1))) = (𝐴 Xrm 𝑁)))
9590, 94mpbid 222 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → ((𝐴 · (𝐴 Yrm 𝑁)) − (𝐴 Yrm (𝑁 − 1))) = (𝐴 Xrm 𝑁))
9685, 95breqtrd 4830 . 2 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → ((2 · (𝐴 Yrm 𝑁)) − (𝐴 Yrm (𝑁 − 1))) ≤ (𝐴 Xrm 𝑁))
9712, 16, 20, 69, 96ltletrd 10389 1 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → ((𝐴 Yrm (𝑁 − 1)) + (𝐴 Yrm 𝑁)) < (𝐴 Xrm 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1632  wcel 2139   class class class wbr 4804  cfv 6049  (class class class)co 6813  cc 10126  cr 10127  0cc0 10128  1c1 10129   + caddc 10131   · cmul 10133   < clt 10266  cle 10267  cmin 10458  cn 11212  2c2 11262  0cn0 11484  cz 11569  cuz 11879   Xrm crmx 37966   Yrm crmy 37967
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-inf2 8711  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205  ax-pre-sup 10206  ax-addf 10207  ax-mulf 10208
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-fal 1638  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-iin 4675  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-se 5226  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-isom 6058  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-of 7062  df-om 7231  df-1st 7333  df-2nd 7334  df-supp 7464  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-1o 7729  df-2o 7730  df-oadd 7733  df-omul 7734  df-er 7911  df-map 8025  df-pm 8026  df-ixp 8075  df-en 8122  df-dom 8123  df-sdom 8124  df-fin 8125  df-fsupp 8441  df-fi 8482  df-sup 8513  df-inf 8514  df-oi 8580  df-card 8955  df-acn 8958  df-cda 9182  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-div 10877  df-nn 11213  df-2 11271  df-3 11272  df-4 11273  df-5 11274  df-6 11275  df-7 11276  df-8 11277  df-9 11278  df-n0 11485  df-xnn0 11556  df-z 11570  df-dec 11686  df-uz 11880  df-q 11982  df-rp 12026  df-xneg 12139  df-xadd 12140  df-xmul 12141  df-ioo 12372  df-ioc 12373  df-ico 12374  df-icc 12375  df-fz 12520  df-fzo 12660  df-fl 12787  df-mod 12863  df-seq 12996  df-exp 13055  df-fac 13255  df-bc 13284  df-hash 13312  df-shft 14006  df-cj 14038  df-re 14039  df-im 14040  df-sqrt 14174  df-abs 14175  df-limsup 14401  df-clim 14418  df-rlim 14419  df-sum 14616  df-ef 14997  df-sin 14999  df-cos 15000  df-pi 15002  df-dvds 15183  df-gcd 15419  df-numer 15645  df-denom 15646  df-struct 16061  df-ndx 16062  df-slot 16063  df-base 16065  df-sets 16066  df-ress 16067  df-plusg 16156  df-mulr 16157  df-starv 16158  df-sca 16159  df-vsca 16160  df-ip 16161  df-tset 16162  df-ple 16163  df-ds 16166  df-unif 16167  df-hom 16168  df-cco 16169  df-rest 16285  df-topn 16286  df-0g 16304  df-gsum 16305  df-topgen 16306  df-pt 16307  df-prds 16310  df-xrs 16364  df-qtop 16369  df-imas 16370  df-xps 16372  df-mre 16448  df-mrc 16449  df-acs 16451  df-mgm 17443  df-sgrp 17485  df-mnd 17496  df-submnd 17537  df-mulg 17742  df-cntz 17950  df-cmn 18395  df-psmet 19940  df-xmet 19941  df-met 19942  df-bl 19943  df-mopn 19944  df-fbas 19945  df-fg 19946  df-cnfld 19949  df-top 20901  df-topon 20918  df-topsp 20939  df-bases 20952  df-cld 21025  df-ntr 21026  df-cls 21027  df-nei 21104  df-lp 21142  df-perf 21143  df-cn 21233  df-cnp 21234  df-haus 21321  df-tx 21567  df-hmeo 21760  df-fil 21851  df-fm 21943  df-flim 21944  df-flf 21945  df-xms 22326  df-ms 22327  df-tms 22328  df-cncf 22882  df-limc 23829  df-dv 23830  df-log 24502  df-squarenn 37907  df-pell1qr 37908  df-pell14qr 37909  df-pell1234qr 37910  df-pellfund 37911  df-rmx 37968  df-rmy 37969
This theorem is referenced by:  jm2.24  38032
  Copyright terms: Public domain W3C validator