Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  jm2.19 Structured version   Visualization version   GIF version

Theorem jm2.19 38062
Description: Lemma 2.19 of [JonesMatijasevic] p. 696. Transfer divisibility constraints between Y-values and their indices. (Contributed by Stefan O'Rear, 24-Sep-2014.)
Assertion
Ref Expression
jm2.19 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁)))

Proof of Theorem jm2.19
StepHypRef Expression
1 rmyeq0 38022 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝑁 = 0 ↔ (𝐴 Yrm 𝑁) = 0))
213adant2 1126 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 = 0 ↔ (𝐴 Yrm 𝑁) = 0))
3 0dvds 15204 . . . . . 6 (𝑁 ∈ ℤ → (0 ∥ 𝑁𝑁 = 0))
433ad2ant3 1130 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0 ∥ 𝑁𝑁 = 0))
5 frmy 37981 . . . . . . . 8 Yrm :((ℤ‘2) × ℤ)⟶ℤ
65fovcl 6930 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm 𝑁) ∈ ℤ)
763adant2 1126 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm 𝑁) ∈ ℤ)
8 0dvds 15204 . . . . . 6 ((𝐴 Yrm 𝑁) ∈ ℤ → (0 ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑁) = 0))
97, 8syl 17 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0 ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑁) = 0))
102, 4, 93bitr4d 300 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0 ∥ 𝑁 ↔ 0 ∥ (𝐴 Yrm 𝑁)))
1110adantr 472 . . 3 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → (0 ∥ 𝑁 ↔ 0 ∥ (𝐴 Yrm 𝑁)))
12 simpr 479 . . . 4 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → 𝑀 = 0)
1312breq1d 4814 . . 3 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → (𝑀𝑁 ↔ 0 ∥ 𝑁))
1412oveq2d 6829 . . . . 5 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → (𝐴 Yrm 𝑀) = (𝐴 Yrm 0))
15 simpl1 1228 . . . . . 6 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → 𝐴 ∈ (ℤ‘2))
16 rmy0 37996 . . . . . 6 (𝐴 ∈ (ℤ‘2) → (𝐴 Yrm 0) = 0)
1715, 16syl 17 . . . . 5 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → (𝐴 Yrm 0) = 0)
1814, 17eqtrd 2794 . . . 4 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → (𝐴 Yrm 𝑀) = 0)
1918breq1d 4814 . . 3 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ 0 ∥ (𝐴 Yrm 𝑁)))
2011, 13, 193bitr4d 300 . 2 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 = 0) → (𝑀𝑁 ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁)))
215fovcl 6930 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ) → (𝐴 Yrm 𝑀) ∈ ℤ)
22213adant3 1127 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm 𝑀) ∈ ℤ)
23 dvds0 15199 . . . . . . . 8 ((𝐴 Yrm 𝑀) ∈ ℤ → (𝐴 Yrm 𝑀) ∥ 0)
2422, 23syl 17 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm 𝑀) ∥ 0)
25163ad2ant1 1128 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm 0) = 0)
2624, 25breqtrrd 4832 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 0))
27 oveq2 6821 . . . . . . 7 ((𝑁 mod (abs‘𝑀)) = 0 → (𝐴 Yrm (𝑁 mod (abs‘𝑀))) = (𝐴 Yrm 0))
2827breq2d 4816 . . . . . 6 ((𝑁 mod (abs‘𝑀)) = 0 → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 mod (abs‘𝑀))) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 0)))
2926, 28syl5ibrcom 237 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑁 mod (abs‘𝑀)) = 0 → (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 mod (abs‘𝑀)))))
3029adantr 472 . . . 4 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → ((𝑁 mod (abs‘𝑀)) = 0 → (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 mod (abs‘𝑀)))))
31 zre 11573 . . . . . . . . . . . . 13 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
32313ad2ant3 1130 . . . . . . . . . . . 12 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℝ)
3332ad2antrr 764 . . . . . . . . . . 11 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ (𝑁 mod (abs‘𝑀)) ≠ 0) → 𝑁 ∈ ℝ)
34 zcn 11574 . . . . . . . . . . . . . 14 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
35343ad2ant2 1129 . . . . . . . . . . . . 13 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∈ ℂ)
3635ad2antrr 764 . . . . . . . . . . . 12 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ (𝑁 mod (abs‘𝑀)) ≠ 0) → 𝑀 ∈ ℂ)
37 simplr 809 . . . . . . . . . . . 12 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ (𝑁 mod (abs‘𝑀)) ≠ 0) → 𝑀 ≠ 0)
3836, 37absrpcld 14386 . . . . . . . . . . 11 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ (𝑁 mod (abs‘𝑀)) ≠ 0) → (abs‘𝑀) ∈ ℝ+)
39 modlt 12873 . . . . . . . . . . 11 ((𝑁 ∈ ℝ ∧ (abs‘𝑀) ∈ ℝ+) → (𝑁 mod (abs‘𝑀)) < (abs‘𝑀))
4033, 38, 39syl2anc 696 . . . . . . . . . 10 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ (𝑁 mod (abs‘𝑀)) ≠ 0) → (𝑁 mod (abs‘𝑀)) < (abs‘𝑀))
41 simpll1 1255 . . . . . . . . . . 11 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ (𝑁 mod (abs‘𝑀)) ≠ 0) → 𝐴 ∈ (ℤ‘2))
42 simpll3 1259 . . . . . . . . . . . 12 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ (𝑁 mod (abs‘𝑀)) ≠ 0) → 𝑁 ∈ ℤ)
43 simpll2 1257 . . . . . . . . . . . . 13 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ (𝑁 mod (abs‘𝑀)) ≠ 0) → 𝑀 ∈ ℤ)
44 nnabscl 14264 . . . . . . . . . . . . 13 ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) → (abs‘𝑀) ∈ ℕ)
4543, 37, 44syl2anc 696 . . . . . . . . . . . 12 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ (𝑁 mod (abs‘𝑀)) ≠ 0) → (abs‘𝑀) ∈ ℕ)
4642, 45zmodcld 12885 . . . . . . . . . . 11 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ (𝑁 mod (abs‘𝑀)) ≠ 0) → (𝑁 mod (abs‘𝑀)) ∈ ℕ0)
47 nn0abscl 14251 . . . . . . . . . . . . 13 (𝑀 ∈ ℤ → (abs‘𝑀) ∈ ℕ0)
48473ad2ant2 1129 . . . . . . . . . . . 12 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (abs‘𝑀) ∈ ℕ0)
4948ad2antrr 764 . . . . . . . . . . 11 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ (𝑁 mod (abs‘𝑀)) ≠ 0) → (abs‘𝑀) ∈ ℕ0)
50 ltrmynn0 38017 . . . . . . . . . . 11 ((𝐴 ∈ (ℤ‘2) ∧ (𝑁 mod (abs‘𝑀)) ∈ ℕ0 ∧ (abs‘𝑀) ∈ ℕ0) → ((𝑁 mod (abs‘𝑀)) < (abs‘𝑀) ↔ (𝐴 Yrm (𝑁 mod (abs‘𝑀))) < (𝐴 Yrm (abs‘𝑀))))
5141, 46, 49, 50syl3anc 1477 . . . . . . . . . 10 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ (𝑁 mod (abs‘𝑀)) ≠ 0) → ((𝑁 mod (abs‘𝑀)) < (abs‘𝑀) ↔ (𝐴 Yrm (𝑁 mod (abs‘𝑀))) < (𝐴 Yrm (abs‘𝑀))))
5240, 51mpbid 222 . . . . . . . . 9 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ (𝑁 mod (abs‘𝑀)) ≠ 0) → (𝐴 Yrm (𝑁 mod (abs‘𝑀))) < (𝐴 Yrm (abs‘𝑀)))
5346nn0zd 11672 . . . . . . . . . . 11 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ (𝑁 mod (abs‘𝑀)) ≠ 0) → (𝑁 mod (abs‘𝑀)) ∈ ℤ)
54 rmyabs 38027 . . . . . . . . . . 11 ((𝐴 ∈ (ℤ‘2) ∧ (𝑁 mod (abs‘𝑀)) ∈ ℤ) → (abs‘(𝐴 Yrm (𝑁 mod (abs‘𝑀)))) = (𝐴 Yrm (abs‘(𝑁 mod (abs‘𝑀)))))
5541, 53, 54syl2anc 696 . . . . . . . . . 10 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ (𝑁 mod (abs‘𝑀)) ≠ 0) → (abs‘(𝐴 Yrm (𝑁 mod (abs‘𝑀)))) = (𝐴 Yrm (abs‘(𝑁 mod (abs‘𝑀)))))
5633, 38modcld 12868 . . . . . . . . . . . 12 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ (𝑁 mod (abs‘𝑀)) ≠ 0) → (𝑁 mod (abs‘𝑀)) ∈ ℝ)
57 modge0 12872 . . . . . . . . . . . . 13 ((𝑁 ∈ ℝ ∧ (abs‘𝑀) ∈ ℝ+) → 0 ≤ (𝑁 mod (abs‘𝑀)))
5833, 38, 57syl2anc 696 . . . . . . . . . . . 12 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ (𝑁 mod (abs‘𝑀)) ≠ 0) → 0 ≤ (𝑁 mod (abs‘𝑀)))
5956, 58absidd 14360 . . . . . . . . . . 11 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ (𝑁 mod (abs‘𝑀)) ≠ 0) → (abs‘(𝑁 mod (abs‘𝑀))) = (𝑁 mod (abs‘𝑀)))
6059oveq2d 6829 . . . . . . . . . 10 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ (𝑁 mod (abs‘𝑀)) ≠ 0) → (𝐴 Yrm (abs‘(𝑁 mod (abs‘𝑀)))) = (𝐴 Yrm (𝑁 mod (abs‘𝑀))))
6155, 60eqtrd 2794 . . . . . . . . 9 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ (𝑁 mod (abs‘𝑀)) ≠ 0) → (abs‘(𝐴 Yrm (𝑁 mod (abs‘𝑀)))) = (𝐴 Yrm (𝑁 mod (abs‘𝑀))))
62 rmyabs 38027 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ) → (abs‘(𝐴 Yrm 𝑀)) = (𝐴 Yrm (abs‘𝑀)))
6341, 43, 62syl2anc 696 . . . . . . . . 9 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ (𝑁 mod (abs‘𝑀)) ≠ 0) → (abs‘(𝐴 Yrm 𝑀)) = (𝐴 Yrm (abs‘𝑀)))
6452, 61, 633brtr4d 4836 . . . . . . . 8 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ (𝑁 mod (abs‘𝑀)) ≠ 0) → (abs‘(𝐴 Yrm (𝑁 mod (abs‘𝑀)))) < (abs‘(𝐴 Yrm 𝑀)))
655fovcl 6930 . . . . . . . . . . . 12 ((𝐴 ∈ (ℤ‘2) ∧ (𝑁 mod (abs‘𝑀)) ∈ ℤ) → (𝐴 Yrm (𝑁 mod (abs‘𝑀))) ∈ ℤ)
6641, 53, 65syl2anc 696 . . . . . . . . . . 11 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ (𝑁 mod (abs‘𝑀)) ≠ 0) → (𝐴 Yrm (𝑁 mod (abs‘𝑀))) ∈ ℤ)
67 nn0abscl 14251 . . . . . . . . . . 11 ((𝐴 Yrm (𝑁 mod (abs‘𝑀))) ∈ ℤ → (abs‘(𝐴 Yrm (𝑁 mod (abs‘𝑀)))) ∈ ℕ0)
6866, 67syl 17 . . . . . . . . . 10 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ (𝑁 mod (abs‘𝑀)) ≠ 0) → (abs‘(𝐴 Yrm (𝑁 mod (abs‘𝑀)))) ∈ ℕ0)
6968nn0red 11544 . . . . . . . . 9 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ (𝑁 mod (abs‘𝑀)) ≠ 0) → (abs‘(𝐴 Yrm (𝑁 mod (abs‘𝑀)))) ∈ ℝ)
7022ad2antrr 764 . . . . . . . . . . 11 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ (𝑁 mod (abs‘𝑀)) ≠ 0) → (𝐴 Yrm 𝑀) ∈ ℤ)
71 nn0abscl 14251 . . . . . . . . . . 11 ((𝐴 Yrm 𝑀) ∈ ℤ → (abs‘(𝐴 Yrm 𝑀)) ∈ ℕ0)
7270, 71syl 17 . . . . . . . . . 10 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ (𝑁 mod (abs‘𝑀)) ≠ 0) → (abs‘(𝐴 Yrm 𝑀)) ∈ ℕ0)
7372nn0red 11544 . . . . . . . . 9 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ (𝑁 mod (abs‘𝑀)) ≠ 0) → (abs‘(𝐴 Yrm 𝑀)) ∈ ℝ)
7469, 73ltnled 10376 . . . . . . . 8 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ (𝑁 mod (abs‘𝑀)) ≠ 0) → ((abs‘(𝐴 Yrm (𝑁 mod (abs‘𝑀)))) < (abs‘(𝐴 Yrm 𝑀)) ↔ ¬ (abs‘(𝐴 Yrm 𝑀)) ≤ (abs‘(𝐴 Yrm (𝑁 mod (abs‘𝑀))))))
7564, 74mpbid 222 . . . . . . 7 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ (𝑁 mod (abs‘𝑀)) ≠ 0) → ¬ (abs‘(𝐴 Yrm 𝑀)) ≤ (abs‘(𝐴 Yrm (𝑁 mod (abs‘𝑀)))))
76 simpr 479 . . . . . . . . 9 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ (𝑁 mod (abs‘𝑀)) ≠ 0) → (𝑁 mod (abs‘𝑀)) ≠ 0)
77 rmyeq0 38022 . . . . . . . . . . 11 ((𝐴 ∈ (ℤ‘2) ∧ (𝑁 mod (abs‘𝑀)) ∈ ℤ) → ((𝑁 mod (abs‘𝑀)) = 0 ↔ (𝐴 Yrm (𝑁 mod (abs‘𝑀))) = 0))
7841, 53, 77syl2anc 696 . . . . . . . . . 10 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ (𝑁 mod (abs‘𝑀)) ≠ 0) → ((𝑁 mod (abs‘𝑀)) = 0 ↔ (𝐴 Yrm (𝑁 mod (abs‘𝑀))) = 0))
7978necon3bid 2976 . . . . . . . . 9 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ (𝑁 mod (abs‘𝑀)) ≠ 0) → ((𝑁 mod (abs‘𝑀)) ≠ 0 ↔ (𝐴 Yrm (𝑁 mod (abs‘𝑀))) ≠ 0))
8076, 79mpbid 222 . . . . . . . 8 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ (𝑁 mod (abs‘𝑀)) ≠ 0) → (𝐴 Yrm (𝑁 mod (abs‘𝑀))) ≠ 0)
81 dvdsleabs2 15236 . . . . . . . 8 (((𝐴 Yrm 𝑀) ∈ ℤ ∧ (𝐴 Yrm (𝑁 mod (abs‘𝑀))) ∈ ℤ ∧ (𝐴 Yrm (𝑁 mod (abs‘𝑀))) ≠ 0) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 mod (abs‘𝑀))) → (abs‘(𝐴 Yrm 𝑀)) ≤ (abs‘(𝐴 Yrm (𝑁 mod (abs‘𝑀))))))
8270, 66, 80, 81syl3anc 1477 . . . . . . 7 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ (𝑁 mod (abs‘𝑀)) ≠ 0) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 mod (abs‘𝑀))) → (abs‘(𝐴 Yrm 𝑀)) ≤ (abs‘(𝐴 Yrm (𝑁 mod (abs‘𝑀))))))
8375, 82mtod 189 . . . . . 6 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) ∧ (𝑁 mod (abs‘𝑀)) ≠ 0) → ¬ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 mod (abs‘𝑀))))
8483ex 449 . . . . 5 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → ((𝑁 mod (abs‘𝑀)) ≠ 0 → ¬ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 mod (abs‘𝑀)))))
8584necon4ad 2951 . . . 4 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 mod (abs‘𝑀))) → (𝑁 mod (abs‘𝑀)) = 0))
8630, 85impbid 202 . . 3 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → ((𝑁 mod (abs‘𝑀)) = 0 ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 mod (abs‘𝑀)))))
87 simpl2 1230 . . . 4 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → 𝑀 ∈ ℤ)
88 simpl3 1232 . . . 4 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → 𝑁 ∈ ℤ)
89 simpr 479 . . . 4 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → 𝑀 ≠ 0)
90 dvdsabsmod0 38056 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≠ 0) → (𝑀𝑁 ↔ (𝑁 mod (abs‘𝑀)) = 0))
9187, 88, 89, 90syl3anc 1477 . . 3 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → (𝑀𝑁 ↔ (𝑁 mod (abs‘𝑀)) = 0))
92 simpl1 1228 . . . . 5 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → 𝐴 ∈ (ℤ‘2))
9332adantr 472 . . . . . . 7 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → 𝑁 ∈ ℝ)
94 zre 11573 . . . . . . . . 9 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
95943ad2ant2 1129 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∈ ℝ)
9695adantr 472 . . . . . . 7 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → 𝑀 ∈ ℝ)
97 modabsdifz 38055 . . . . . . 7 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑀 ≠ 0) → ((𝑁 − (𝑁 mod (abs‘𝑀))) / 𝑀) ∈ ℤ)
9893, 96, 89, 97syl3anc 1477 . . . . . 6 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → ((𝑁 − (𝑁 mod (abs‘𝑀))) / 𝑀) ∈ ℤ)
9998znegcld 11676 . . . . 5 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → -((𝑁 − (𝑁 mod (abs‘𝑀))) / 𝑀) ∈ ℤ)
100 jm2.19lem4 38061 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ -((𝑁 − (𝑁 mod (abs‘𝑀))) / 𝑀) ∈ ℤ) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (-((𝑁 − (𝑁 mod (abs‘𝑀))) / 𝑀) · 𝑀)))))
10192, 87, 88, 99, 100syl121anc 1482 . . . 4 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (-((𝑁 − (𝑁 mod (abs‘𝑀))) / 𝑀) · 𝑀)))))
10232recnd 10260 . . . . . . . . . . . 12 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℂ)
103102adantr 472 . . . . . . . . . . 11 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → 𝑁 ∈ ℂ)
10435adantr 472 . . . . . . . . . . . . . 14 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → 𝑀 ∈ ℂ)
105104, 89absrpcld 14386 . . . . . . . . . . . . 13 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → (abs‘𝑀) ∈ ℝ+)
10693, 105modcld 12868 . . . . . . . . . . . 12 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → (𝑁 mod (abs‘𝑀)) ∈ ℝ)
107106recnd 10260 . . . . . . . . . . 11 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → (𝑁 mod (abs‘𝑀)) ∈ ℂ)
108103, 107subcld 10584 . . . . . . . . . 10 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → (𝑁 − (𝑁 mod (abs‘𝑀))) ∈ ℂ)
109108, 104, 89divcld 10993 . . . . . . . . 9 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → ((𝑁 − (𝑁 mod (abs‘𝑀))) / 𝑀) ∈ ℂ)
110109, 104mulneg1d 10675 . . . . . . . 8 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → (-((𝑁 − (𝑁 mod (abs‘𝑀))) / 𝑀) · 𝑀) = -(((𝑁 − (𝑁 mod (abs‘𝑀))) / 𝑀) · 𝑀))
111110oveq2d 6829 . . . . . . 7 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → (𝑁 + (-((𝑁 − (𝑁 mod (abs‘𝑀))) / 𝑀) · 𝑀)) = (𝑁 + -(((𝑁 − (𝑁 mod (abs‘𝑀))) / 𝑀) · 𝑀)))
112109, 104mulcld 10252 . . . . . . . 8 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → (((𝑁 − (𝑁 mod (abs‘𝑀))) / 𝑀) · 𝑀) ∈ ℂ)
113103, 112negsubd 10590 . . . . . . 7 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → (𝑁 + -(((𝑁 − (𝑁 mod (abs‘𝑀))) / 𝑀) · 𝑀)) = (𝑁 − (((𝑁 − (𝑁 mod (abs‘𝑀))) / 𝑀) · 𝑀)))
114108, 104, 89divcan1d 10994 . . . . . . . . 9 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → (((𝑁 − (𝑁 mod (abs‘𝑀))) / 𝑀) · 𝑀) = (𝑁 − (𝑁 mod (abs‘𝑀))))
115114oveq2d 6829 . . . . . . . 8 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → (𝑁 − (((𝑁 − (𝑁 mod (abs‘𝑀))) / 𝑀) · 𝑀)) = (𝑁 − (𝑁 − (𝑁 mod (abs‘𝑀)))))
116103, 107nncand 10589 . . . . . . . 8 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → (𝑁 − (𝑁 − (𝑁 mod (abs‘𝑀)))) = (𝑁 mod (abs‘𝑀)))
117115, 116eqtrd 2794 . . . . . . 7 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → (𝑁 − (((𝑁 − (𝑁 mod (abs‘𝑀))) / 𝑀) · 𝑀)) = (𝑁 mod (abs‘𝑀)))
118111, 113, 1173eqtrrd 2799 . . . . . 6 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → (𝑁 mod (abs‘𝑀)) = (𝑁 + (-((𝑁 − (𝑁 mod (abs‘𝑀))) / 𝑀) · 𝑀)))
119118oveq2d 6829 . . . . 5 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → (𝐴 Yrm (𝑁 mod (abs‘𝑀))) = (𝐴 Yrm (𝑁 + (-((𝑁 − (𝑁 mod (abs‘𝑀))) / 𝑀) · 𝑀))))
120119breq2d 4816 . . . 4 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 mod (abs‘𝑀))) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 + (-((𝑁 − (𝑁 mod (abs‘𝑀))) / 𝑀) · 𝑀)))))
121101, 120bitr4d 271 . . 3 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → ((𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁) ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm (𝑁 mod (abs‘𝑀)))))
12286, 91, 1213bitr4d 300 . 2 (((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ≠ 0) → (𝑀𝑁 ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁)))
12320, 122pm2.61dane 3019 1 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 ↔ (𝐴 Yrm 𝑀) ∥ (𝐴 Yrm 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383  w3a 1072   = wceq 1632  wcel 2139  wne 2932   class class class wbr 4804  cfv 6049  (class class class)co 6813  cc 10126  cr 10127  0cc0 10128   + caddc 10131   · cmul 10133   < clt 10266  cle 10267  cmin 10458  -cneg 10459   / cdiv 10876  cn 11212  2c2 11262  0cn0 11484  cz 11569  cuz 11879  +crp 12025   mod cmo 12862  abscabs 14173  cdvds 15182   Yrm crmy 37967
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-inf2 8711  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205  ax-pre-sup 10206  ax-addf 10207  ax-mulf 10208
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-fal 1638  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-iin 4675  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-se 5226  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-isom 6058  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-of 7062  df-om 7231  df-1st 7333  df-2nd 7334  df-supp 7464  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-1o 7729  df-2o 7730  df-oadd 7733  df-omul 7734  df-er 7911  df-map 8025  df-pm 8026  df-ixp 8075  df-en 8122  df-dom 8123  df-sdom 8124  df-fin 8125  df-fsupp 8441  df-fi 8482  df-sup 8513  df-inf 8514  df-oi 8580  df-card 8955  df-acn 8958  df-cda 9182  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-div 10877  df-nn 11213  df-2 11271  df-3 11272  df-4 11273  df-5 11274  df-6 11275  df-7 11276  df-8 11277  df-9 11278  df-n0 11485  df-xnn0 11556  df-z 11570  df-dec 11686  df-uz 11880  df-q 11982  df-rp 12026  df-xneg 12139  df-xadd 12140  df-xmul 12141  df-ioo 12372  df-ioc 12373  df-ico 12374  df-icc 12375  df-fz 12520  df-fzo 12660  df-fl 12787  df-mod 12863  df-seq 12996  df-exp 13055  df-fac 13255  df-bc 13284  df-hash 13312  df-shft 14006  df-cj 14038  df-re 14039  df-im 14040  df-sqrt 14174  df-abs 14175  df-limsup 14401  df-clim 14418  df-rlim 14419  df-sum 14616  df-ef 14997  df-sin 14999  df-cos 15000  df-pi 15002  df-dvds 15183  df-gcd 15419  df-numer 15645  df-denom 15646  df-struct 16061  df-ndx 16062  df-slot 16063  df-base 16065  df-sets 16066  df-ress 16067  df-plusg 16156  df-mulr 16157  df-starv 16158  df-sca 16159  df-vsca 16160  df-ip 16161  df-tset 16162  df-ple 16163  df-ds 16166  df-unif 16167  df-hom 16168  df-cco 16169  df-rest 16285  df-topn 16286  df-0g 16304  df-gsum 16305  df-topgen 16306  df-pt 16307  df-prds 16310  df-xrs 16364  df-qtop 16369  df-imas 16370  df-xps 16372  df-mre 16448  df-mrc 16449  df-acs 16451  df-mgm 17443  df-sgrp 17485  df-mnd 17496  df-submnd 17537  df-mulg 17742  df-cntz 17950  df-cmn 18395  df-psmet 19940  df-xmet 19941  df-met 19942  df-bl 19943  df-mopn 19944  df-fbas 19945  df-fg 19946  df-cnfld 19949  df-top 20901  df-topon 20918  df-topsp 20939  df-bases 20952  df-cld 21025  df-ntr 21026  df-cls 21027  df-nei 21104  df-lp 21142  df-perf 21143  df-cn 21233  df-cnp 21234  df-haus 21321  df-tx 21567  df-hmeo 21760  df-fil 21851  df-fm 21943  df-flim 21944  df-flf 21945  df-xms 22326  df-ms 22327  df-tms 22328  df-cncf 22882  df-limc 23829  df-dv 23830  df-log 24502  df-squarenn 37907  df-pell1qr 37908  df-pell14qr 37909  df-pell1234qr 37910  df-pellfund 37911  df-rmx 37968  df-rmy 37969
This theorem is referenced by:  jm2.20nn  38066
  Copyright terms: Public domain W3C validator