Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  jm2.17b Structured version   Visualization version   GIF version

Theorem jm2.17b 38048
Description: Weak form of the second half of lemma 2.17 of [JonesMatijasevic] p. 696, allowing induction to start lower. (Contributed by Stefan O'Rear, 15-Oct-2014.)
Assertion
Ref Expression
jm2.17b ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → (𝐴 Yrm (𝑁 + 1)) ≤ ((2 · 𝐴)↑𝑁))

Proof of Theorem jm2.17b
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 6821 . . . . . 6 (𝑎 = 0 → (𝑎 + 1) = (0 + 1))
21oveq2d 6830 . . . . 5 (𝑎 = 0 → (𝐴 Yrm (𝑎 + 1)) = (𝐴 Yrm (0 + 1)))
3 oveq2 6822 . . . . 5 (𝑎 = 0 → ((2 · 𝐴)↑𝑎) = ((2 · 𝐴)↑0))
42, 3breq12d 4817 . . . 4 (𝑎 = 0 → ((𝐴 Yrm (𝑎 + 1)) ≤ ((2 · 𝐴)↑𝑎) ↔ (𝐴 Yrm (0 + 1)) ≤ ((2 · 𝐴)↑0)))
54imbi2d 329 . . 3 (𝑎 = 0 → ((𝐴 ∈ (ℤ‘2) → (𝐴 Yrm (𝑎 + 1)) ≤ ((2 · 𝐴)↑𝑎)) ↔ (𝐴 ∈ (ℤ‘2) → (𝐴 Yrm (0 + 1)) ≤ ((2 · 𝐴)↑0))))
6 oveq1 6821 . . . . . 6 (𝑎 = 𝑏 → (𝑎 + 1) = (𝑏 + 1))
76oveq2d 6830 . . . . 5 (𝑎 = 𝑏 → (𝐴 Yrm (𝑎 + 1)) = (𝐴 Yrm (𝑏 + 1)))
8 oveq2 6822 . . . . 5 (𝑎 = 𝑏 → ((2 · 𝐴)↑𝑎) = ((2 · 𝐴)↑𝑏))
97, 8breq12d 4817 . . . 4 (𝑎 = 𝑏 → ((𝐴 Yrm (𝑎 + 1)) ≤ ((2 · 𝐴)↑𝑎) ↔ (𝐴 Yrm (𝑏 + 1)) ≤ ((2 · 𝐴)↑𝑏)))
109imbi2d 329 . . 3 (𝑎 = 𝑏 → ((𝐴 ∈ (ℤ‘2) → (𝐴 Yrm (𝑎 + 1)) ≤ ((2 · 𝐴)↑𝑎)) ↔ (𝐴 ∈ (ℤ‘2) → (𝐴 Yrm (𝑏 + 1)) ≤ ((2 · 𝐴)↑𝑏))))
11 oveq1 6821 . . . . . 6 (𝑎 = (𝑏 + 1) → (𝑎 + 1) = ((𝑏 + 1) + 1))
1211oveq2d 6830 . . . . 5 (𝑎 = (𝑏 + 1) → (𝐴 Yrm (𝑎 + 1)) = (𝐴 Yrm ((𝑏 + 1) + 1)))
13 oveq2 6822 . . . . 5 (𝑎 = (𝑏 + 1) → ((2 · 𝐴)↑𝑎) = ((2 · 𝐴)↑(𝑏 + 1)))
1412, 13breq12d 4817 . . . 4 (𝑎 = (𝑏 + 1) → ((𝐴 Yrm (𝑎 + 1)) ≤ ((2 · 𝐴)↑𝑎) ↔ (𝐴 Yrm ((𝑏 + 1) + 1)) ≤ ((2 · 𝐴)↑(𝑏 + 1))))
1514imbi2d 329 . . 3 (𝑎 = (𝑏 + 1) → ((𝐴 ∈ (ℤ‘2) → (𝐴 Yrm (𝑎 + 1)) ≤ ((2 · 𝐴)↑𝑎)) ↔ (𝐴 ∈ (ℤ‘2) → (𝐴 Yrm ((𝑏 + 1) + 1)) ≤ ((2 · 𝐴)↑(𝑏 + 1)))))
16 oveq1 6821 . . . . . 6 (𝑎 = 𝑁 → (𝑎 + 1) = (𝑁 + 1))
1716oveq2d 6830 . . . . 5 (𝑎 = 𝑁 → (𝐴 Yrm (𝑎 + 1)) = (𝐴 Yrm (𝑁 + 1)))
18 oveq2 6822 . . . . 5 (𝑎 = 𝑁 → ((2 · 𝐴)↑𝑎) = ((2 · 𝐴)↑𝑁))
1917, 18breq12d 4817 . . . 4 (𝑎 = 𝑁 → ((𝐴 Yrm (𝑎 + 1)) ≤ ((2 · 𝐴)↑𝑎) ↔ (𝐴 Yrm (𝑁 + 1)) ≤ ((2 · 𝐴)↑𝑁)))
2019imbi2d 329 . . 3 (𝑎 = 𝑁 → ((𝐴 ∈ (ℤ‘2) → (𝐴 Yrm (𝑎 + 1)) ≤ ((2 · 𝐴)↑𝑎)) ↔ (𝐴 ∈ (ℤ‘2) → (𝐴 Yrm (𝑁 + 1)) ≤ ((2 · 𝐴)↑𝑁))))
21 1le1 10867 . . . 4 1 ≤ 1
22 0p1e1 11344 . . . . . . 7 (0 + 1) = 1
2322oveq2i 6825 . . . . . 6 (𝐴 Yrm (0 + 1)) = (𝐴 Yrm 1)
24 rmy1 38015 . . . . . 6 (𝐴 ∈ (ℤ‘2) → (𝐴 Yrm 1) = 1)
2523, 24syl5eq 2806 . . . . 5 (𝐴 ∈ (ℤ‘2) → (𝐴 Yrm (0 + 1)) = 1)
26 2re 11302 . . . . . . . 8 2 ∈ ℝ
27 eluzelre 11910 . . . . . . . 8 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℝ)
28 remulcl 10233 . . . . . . . 8 ((2 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (2 · 𝐴) ∈ ℝ)
2926, 27, 28sylancr 698 . . . . . . 7 (𝐴 ∈ (ℤ‘2) → (2 · 𝐴) ∈ ℝ)
3029recnd 10280 . . . . . 6 (𝐴 ∈ (ℤ‘2) → (2 · 𝐴) ∈ ℂ)
3130exp0d 13216 . . . . 5 (𝐴 ∈ (ℤ‘2) → ((2 · 𝐴)↑0) = 1)
3225, 31breq12d 4817 . . . 4 (𝐴 ∈ (ℤ‘2) → ((𝐴 Yrm (0 + 1)) ≤ ((2 · 𝐴)↑0) ↔ 1 ≤ 1))
3321, 32mpbiri 248 . . 3 (𝐴 ∈ (ℤ‘2) → (𝐴 Yrm (0 + 1)) ≤ ((2 · 𝐴)↑0))
34 simpr 479 . . . . . . . . 9 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → 𝐴 ∈ (ℤ‘2))
35 nn0z 11612 . . . . . . . . . . 11 (𝑏 ∈ ℕ0𝑏 ∈ ℤ)
3635adantr 472 . . . . . . . . . 10 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → 𝑏 ∈ ℤ)
3736peano2zd 11697 . . . . . . . . 9 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → (𝑏 + 1) ∈ ℤ)
38 rmyluc2 38023 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ (𝑏 + 1) ∈ ℤ) → (𝐴 Yrm ((𝑏 + 1) + 1)) = (((2 · 𝐴) · (𝐴 Yrm (𝑏 + 1))) − (𝐴 Yrm ((𝑏 + 1) − 1))))
3934, 37, 38syl2anc 696 . . . . . . . 8 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → (𝐴 Yrm ((𝑏 + 1) + 1)) = (((2 · 𝐴) · (𝐴 Yrm (𝑏 + 1))) − (𝐴 Yrm ((𝑏 + 1) − 1))))
40 rmxypos 38034 . . . . . . . . . . . 12 ((𝐴 ∈ (ℤ‘2) ∧ 𝑏 ∈ ℕ0) → (0 < (𝐴 Xrm 𝑏) ∧ 0 ≤ (𝐴 Yrm 𝑏)))
4140simprd 482 . . . . . . . . . . 11 ((𝐴 ∈ (ℤ‘2) ∧ 𝑏 ∈ ℕ0) → 0 ≤ (𝐴 Yrm 𝑏))
4241ancoms 468 . . . . . . . . . 10 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → 0 ≤ (𝐴 Yrm 𝑏))
43 nn0re 11513 . . . . . . . . . . . . . 14 (𝑏 ∈ ℕ0𝑏 ∈ ℝ)
4443adantr 472 . . . . . . . . . . . . 13 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → 𝑏 ∈ ℝ)
4544recnd 10280 . . . . . . . . . . . 12 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → 𝑏 ∈ ℂ)
46 ax-1cn 10206 . . . . . . . . . . . 12 1 ∈ ℂ
47 pncan 10499 . . . . . . . . . . . 12 ((𝑏 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑏 + 1) − 1) = 𝑏)
4845, 46, 47sylancl 697 . . . . . . . . . . 11 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → ((𝑏 + 1) − 1) = 𝑏)
4948oveq2d 6830 . . . . . . . . . 10 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → (𝐴 Yrm ((𝑏 + 1) − 1)) = (𝐴 Yrm 𝑏))
5042, 49breqtrrd 4832 . . . . . . . . 9 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → 0 ≤ (𝐴 Yrm ((𝑏 + 1) − 1)))
5127adantl 473 . . . . . . . . . . . 12 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → 𝐴 ∈ ℝ)
5226, 51, 28sylancr 698 . . . . . . . . . . 11 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → (2 · 𝐴) ∈ ℝ)
53 frmy 37999 . . . . . . . . . . . . . 14 Yrm :((ℤ‘2) × ℤ)⟶ℤ
5453fovcl 6931 . . . . . . . . . . . . 13 ((𝐴 ∈ (ℤ‘2) ∧ (𝑏 + 1) ∈ ℤ) → (𝐴 Yrm (𝑏 + 1)) ∈ ℤ)
5554zred 11694 . . . . . . . . . . . 12 ((𝐴 ∈ (ℤ‘2) ∧ (𝑏 + 1) ∈ ℤ) → (𝐴 Yrm (𝑏 + 1)) ∈ ℝ)
5634, 37, 55syl2anc 696 . . . . . . . . . . 11 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → (𝐴 Yrm (𝑏 + 1)) ∈ ℝ)
5752, 56remulcld 10282 . . . . . . . . . 10 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → ((2 · 𝐴) · (𝐴 Yrm (𝑏 + 1))) ∈ ℝ)
5853fovcl 6931 . . . . . . . . . . . . 13 ((𝐴 ∈ (ℤ‘2) ∧ 𝑏 ∈ ℤ) → (𝐴 Yrm 𝑏) ∈ ℤ)
5958zred 11694 . . . . . . . . . . . 12 ((𝐴 ∈ (ℤ‘2) ∧ 𝑏 ∈ ℤ) → (𝐴 Yrm 𝑏) ∈ ℝ)
6034, 36, 59syl2anc 696 . . . . . . . . . . 11 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → (𝐴 Yrm 𝑏) ∈ ℝ)
6149, 60eqeltrd 2839 . . . . . . . . . 10 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → (𝐴 Yrm ((𝑏 + 1) − 1)) ∈ ℝ)
6257, 61subge02d 10831 . . . . . . . . 9 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → (0 ≤ (𝐴 Yrm ((𝑏 + 1) − 1)) ↔ (((2 · 𝐴) · (𝐴 Yrm (𝑏 + 1))) − (𝐴 Yrm ((𝑏 + 1) − 1))) ≤ ((2 · 𝐴) · (𝐴 Yrm (𝑏 + 1)))))
6350, 62mpbid 222 . . . . . . . 8 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → (((2 · 𝐴) · (𝐴 Yrm (𝑏 + 1))) − (𝐴 Yrm ((𝑏 + 1) − 1))) ≤ ((2 · 𝐴) · (𝐴 Yrm (𝑏 + 1))))
6439, 63eqbrtrd 4826 . . . . . . 7 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → (𝐴 Yrm ((𝑏 + 1) + 1)) ≤ ((2 · 𝐴) · (𝐴 Yrm (𝑏 + 1))))
65643adant3 1127 . . . . . 6 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ (𝐴 Yrm (𝑏 + 1)) ≤ ((2 · 𝐴)↑𝑏)) → (𝐴 Yrm ((𝑏 + 1) + 1)) ≤ ((2 · 𝐴) · (𝐴 Yrm (𝑏 + 1))))
66 simpl 474 . . . . . . . . . 10 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → 𝑏 ∈ ℕ0)
6752, 66reexpcld 13239 . . . . . . . . 9 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → ((2 · 𝐴)↑𝑏) ∈ ℝ)
68 2nn 11397 . . . . . . . . . . . 12 2 ∈ ℕ
69 eluz2nn 11939 . . . . . . . . . . . 12 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℕ)
70 nnmulcl 11255 . . . . . . . . . . . 12 ((2 ∈ ℕ ∧ 𝐴 ∈ ℕ) → (2 · 𝐴) ∈ ℕ)
7168, 69, 70sylancr 698 . . . . . . . . . . 11 (𝐴 ∈ (ℤ‘2) → (2 · 𝐴) ∈ ℕ)
7271nngt0d 11276 . . . . . . . . . 10 (𝐴 ∈ (ℤ‘2) → 0 < (2 · 𝐴))
7372adantl 473 . . . . . . . . 9 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → 0 < (2 · 𝐴))
74 lemul2 11088 . . . . . . . . 9 (((𝐴 Yrm (𝑏 + 1)) ∈ ℝ ∧ ((2 · 𝐴)↑𝑏) ∈ ℝ ∧ ((2 · 𝐴) ∈ ℝ ∧ 0 < (2 · 𝐴))) → ((𝐴 Yrm (𝑏 + 1)) ≤ ((2 · 𝐴)↑𝑏) ↔ ((2 · 𝐴) · (𝐴 Yrm (𝑏 + 1))) ≤ ((2 · 𝐴) · ((2 · 𝐴)↑𝑏))))
7556, 67, 52, 73, 74syl112anc 1481 . . . . . . . 8 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → ((𝐴 Yrm (𝑏 + 1)) ≤ ((2 · 𝐴)↑𝑏) ↔ ((2 · 𝐴) · (𝐴 Yrm (𝑏 + 1))) ≤ ((2 · 𝐴) · ((2 · 𝐴)↑𝑏))))
7675biimp3a 1581 . . . . . . 7 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ (𝐴 Yrm (𝑏 + 1)) ≤ ((2 · 𝐴)↑𝑏)) → ((2 · 𝐴) · (𝐴 Yrm (𝑏 + 1))) ≤ ((2 · 𝐴) · ((2 · 𝐴)↑𝑏)))
7752recnd 10280 . . . . . . . . . 10 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → (2 · 𝐴) ∈ ℂ)
7877, 66expp1d 13223 . . . . . . . . 9 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → ((2 · 𝐴)↑(𝑏 + 1)) = (((2 · 𝐴)↑𝑏) · (2 · 𝐴)))
7967recnd 10280 . . . . . . . . . 10 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → ((2 · 𝐴)↑𝑏) ∈ ℂ)
8079, 77mulcomd 10273 . . . . . . . . 9 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → (((2 · 𝐴)↑𝑏) · (2 · 𝐴)) = ((2 · 𝐴) · ((2 · 𝐴)↑𝑏)))
8178, 80eqtrd 2794 . . . . . . . 8 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → ((2 · 𝐴)↑(𝑏 + 1)) = ((2 · 𝐴) · ((2 · 𝐴)↑𝑏)))
82813adant3 1127 . . . . . . 7 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ (𝐴 Yrm (𝑏 + 1)) ≤ ((2 · 𝐴)↑𝑏)) → ((2 · 𝐴)↑(𝑏 + 1)) = ((2 · 𝐴) · ((2 · 𝐴)↑𝑏)))
8376, 82breqtrrd 4832 . . . . . 6 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ (𝐴 Yrm (𝑏 + 1)) ≤ ((2 · 𝐴)↑𝑏)) → ((2 · 𝐴) · (𝐴 Yrm (𝑏 + 1))) ≤ ((2 · 𝐴)↑(𝑏 + 1)))
8437peano2zd 11697 . . . . . . . . 9 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → ((𝑏 + 1) + 1) ∈ ℤ)
8553fovcl 6931 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ ((𝑏 + 1) + 1) ∈ ℤ) → (𝐴 Yrm ((𝑏 + 1) + 1)) ∈ ℤ)
8685zred 11694 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ ((𝑏 + 1) + 1) ∈ ℤ) → (𝐴 Yrm ((𝑏 + 1) + 1)) ∈ ℝ)
8734, 84, 86syl2anc 696 . . . . . . . 8 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → (𝐴 Yrm ((𝑏 + 1) + 1)) ∈ ℝ)
88 peano2nn0 11545 . . . . . . . . . 10 (𝑏 ∈ ℕ0 → (𝑏 + 1) ∈ ℕ0)
8988adantr 472 . . . . . . . . 9 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → (𝑏 + 1) ∈ ℕ0)
9052, 89reexpcld 13239 . . . . . . . 8 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → ((2 · 𝐴)↑(𝑏 + 1)) ∈ ℝ)
91 letr 10343 . . . . . . . 8 (((𝐴 Yrm ((𝑏 + 1) + 1)) ∈ ℝ ∧ ((2 · 𝐴) · (𝐴 Yrm (𝑏 + 1))) ∈ ℝ ∧ ((2 · 𝐴)↑(𝑏 + 1)) ∈ ℝ) → (((𝐴 Yrm ((𝑏 + 1) + 1)) ≤ ((2 · 𝐴) · (𝐴 Yrm (𝑏 + 1))) ∧ ((2 · 𝐴) · (𝐴 Yrm (𝑏 + 1))) ≤ ((2 · 𝐴)↑(𝑏 + 1))) → (𝐴 Yrm ((𝑏 + 1) + 1)) ≤ ((2 · 𝐴)↑(𝑏 + 1))))
9287, 57, 90, 91syl3anc 1477 . . . . . . 7 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → (((𝐴 Yrm ((𝑏 + 1) + 1)) ≤ ((2 · 𝐴) · (𝐴 Yrm (𝑏 + 1))) ∧ ((2 · 𝐴) · (𝐴 Yrm (𝑏 + 1))) ≤ ((2 · 𝐴)↑(𝑏 + 1))) → (𝐴 Yrm ((𝑏 + 1) + 1)) ≤ ((2 · 𝐴)↑(𝑏 + 1))))
93923adant3 1127 . . . . . 6 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ (𝐴 Yrm (𝑏 + 1)) ≤ ((2 · 𝐴)↑𝑏)) → (((𝐴 Yrm ((𝑏 + 1) + 1)) ≤ ((2 · 𝐴) · (𝐴 Yrm (𝑏 + 1))) ∧ ((2 · 𝐴) · (𝐴 Yrm (𝑏 + 1))) ≤ ((2 · 𝐴)↑(𝑏 + 1))) → (𝐴 Yrm ((𝑏 + 1) + 1)) ≤ ((2 · 𝐴)↑(𝑏 + 1))))
9465, 83, 93mp2and 717 . . . . 5 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ (𝐴 Yrm (𝑏 + 1)) ≤ ((2 · 𝐴)↑𝑏)) → (𝐴 Yrm ((𝑏 + 1) + 1)) ≤ ((2 · 𝐴)↑(𝑏 + 1)))
95943exp 1113 . . . 4 (𝑏 ∈ ℕ0 → (𝐴 ∈ (ℤ‘2) → ((𝐴 Yrm (𝑏 + 1)) ≤ ((2 · 𝐴)↑𝑏) → (𝐴 Yrm ((𝑏 + 1) + 1)) ≤ ((2 · 𝐴)↑(𝑏 + 1)))))
9695a2d 29 . . 3 (𝑏 ∈ ℕ0 → ((𝐴 ∈ (ℤ‘2) → (𝐴 Yrm (𝑏 + 1)) ≤ ((2 · 𝐴)↑𝑏)) → (𝐴 ∈ (ℤ‘2) → (𝐴 Yrm ((𝑏 + 1) + 1)) ≤ ((2 · 𝐴)↑(𝑏 + 1)))))
975, 10, 15, 20, 33, 96nn0ind 11684 . 2 (𝑁 ∈ ℕ0 → (𝐴 ∈ (ℤ‘2) → (𝐴 Yrm (𝑁 + 1)) ≤ ((2 · 𝐴)↑𝑁)))
9897impcom 445 1 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → (𝐴 Yrm (𝑁 + 1)) ≤ ((2 · 𝐴)↑𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1072   = wceq 1632  wcel 2139   class class class wbr 4804  cfv 6049  (class class class)co 6814  cc 10146  cr 10147  0cc0 10148  1c1 10149   + caddc 10151   · cmul 10153   < clt 10286  cle 10287  cmin 10478  cn 11232  2c2 11282  0cn0 11504  cz 11589  cuz 11899  cexp 13074   Xrm crmx 37984   Yrm crmy 37985
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-inf2 8713  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225  ax-pre-sup 10226  ax-addf 10227  ax-mulf 10228
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-fal 1638  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-iin 4675  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-se 5226  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-isom 6058  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-of 7063  df-om 7232  df-1st 7334  df-2nd 7335  df-supp 7465  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-1o 7730  df-2o 7731  df-oadd 7734  df-omul 7735  df-er 7913  df-map 8027  df-pm 8028  df-ixp 8077  df-en 8124  df-dom 8125  df-sdom 8126  df-fin 8127  df-fsupp 8443  df-fi 8484  df-sup 8515  df-inf 8516  df-oi 8582  df-card 8975  df-acn 8978  df-cda 9202  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-div 10897  df-nn 11233  df-2 11291  df-3 11292  df-4 11293  df-5 11294  df-6 11295  df-7 11296  df-8 11297  df-9 11298  df-n0 11505  df-xnn0 11576  df-z 11590  df-dec 11706  df-uz 11900  df-q 12002  df-rp 12046  df-xneg 12159  df-xadd 12160  df-xmul 12161  df-ioo 12392  df-ioc 12393  df-ico 12394  df-icc 12395  df-fz 12540  df-fzo 12680  df-fl 12807  df-mod 12883  df-seq 13016  df-exp 13075  df-fac 13275  df-bc 13304  df-hash 13332  df-shft 14026  df-cj 14058  df-re 14059  df-im 14060  df-sqrt 14194  df-abs 14195  df-limsup 14421  df-clim 14438  df-rlim 14439  df-sum 14636  df-ef 15017  df-sin 15019  df-cos 15020  df-pi 15022  df-dvds 15203  df-gcd 15439  df-numer 15665  df-denom 15666  df-struct 16081  df-ndx 16082  df-slot 16083  df-base 16085  df-sets 16086  df-ress 16087  df-plusg 16176  df-mulr 16177  df-starv 16178  df-sca 16179  df-vsca 16180  df-ip 16181  df-tset 16182  df-ple 16183  df-ds 16186  df-unif 16187  df-hom 16188  df-cco 16189  df-rest 16305  df-topn 16306  df-0g 16324  df-gsum 16325  df-topgen 16326  df-pt 16327  df-prds 16330  df-xrs 16384  df-qtop 16389  df-imas 16390  df-xps 16392  df-mre 16468  df-mrc 16469  df-acs 16471  df-mgm 17463  df-sgrp 17505  df-mnd 17516  df-submnd 17557  df-mulg 17762  df-cntz 17970  df-cmn 18415  df-psmet 19960  df-xmet 19961  df-met 19962  df-bl 19963  df-mopn 19964  df-fbas 19965  df-fg 19966  df-cnfld 19969  df-top 20921  df-topon 20938  df-topsp 20959  df-bases 20972  df-cld 21045  df-ntr 21046  df-cls 21047  df-nei 21124  df-lp 21162  df-perf 21163  df-cn 21253  df-cnp 21254  df-haus 21341  df-tx 21587  df-hmeo 21780  df-fil 21871  df-fm 21963  df-flim 21964  df-flf 21965  df-xms 22346  df-ms 22347  df-tms 22348  df-cncf 22902  df-limc 23849  df-dv 23850  df-log 24523  df-squarenn 37925  df-pell1qr 37926  df-pell14qr 37927  df-pell1234qr 37928  df-pellfund 37929  df-rmx 37986  df-rmy 37987
This theorem is referenced by:  jm2.17c  38049
  Copyright terms: Public domain W3C validator