Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  jm2.17a Structured version   Visualization version   GIF version

Theorem jm2.17a 38027
Description: First half of lemma 2.17 of [JonesMatijasevic] p. 696. (Contributed by Stefan O'Rear, 14-Oct-2014.)
Assertion
Ref Expression
jm2.17a ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → (((2 · 𝐴) − 1)↑𝑁) ≤ (𝐴 Yrm (𝑁 + 1)))

Proof of Theorem jm2.17a
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 6819 . . . . 5 (𝑎 = 0 → (((2 · 𝐴) − 1)↑𝑎) = (((2 · 𝐴) − 1)↑0))
2 oveq1 6818 . . . . . 6 (𝑎 = 0 → (𝑎 + 1) = (0 + 1))
32oveq2d 6827 . . . . 5 (𝑎 = 0 → (𝐴 Yrm (𝑎 + 1)) = (𝐴 Yrm (0 + 1)))
41, 3breq12d 4815 . . . 4 (𝑎 = 0 → ((((2 · 𝐴) − 1)↑𝑎) ≤ (𝐴 Yrm (𝑎 + 1)) ↔ (((2 · 𝐴) − 1)↑0) ≤ (𝐴 Yrm (0 + 1))))
54imbi2d 329 . . 3 (𝑎 = 0 → ((𝐴 ∈ (ℤ‘2) → (((2 · 𝐴) − 1)↑𝑎) ≤ (𝐴 Yrm (𝑎 + 1))) ↔ (𝐴 ∈ (ℤ‘2) → (((2 · 𝐴) − 1)↑0) ≤ (𝐴 Yrm (0 + 1)))))
6 oveq2 6819 . . . . 5 (𝑎 = 𝑏 → (((2 · 𝐴) − 1)↑𝑎) = (((2 · 𝐴) − 1)↑𝑏))
7 oveq1 6818 . . . . . 6 (𝑎 = 𝑏 → (𝑎 + 1) = (𝑏 + 1))
87oveq2d 6827 . . . . 5 (𝑎 = 𝑏 → (𝐴 Yrm (𝑎 + 1)) = (𝐴 Yrm (𝑏 + 1)))
96, 8breq12d 4815 . . . 4 (𝑎 = 𝑏 → ((((2 · 𝐴) − 1)↑𝑎) ≤ (𝐴 Yrm (𝑎 + 1)) ↔ (((2 · 𝐴) − 1)↑𝑏) ≤ (𝐴 Yrm (𝑏 + 1))))
109imbi2d 329 . . 3 (𝑎 = 𝑏 → ((𝐴 ∈ (ℤ‘2) → (((2 · 𝐴) − 1)↑𝑎) ≤ (𝐴 Yrm (𝑎 + 1))) ↔ (𝐴 ∈ (ℤ‘2) → (((2 · 𝐴) − 1)↑𝑏) ≤ (𝐴 Yrm (𝑏 + 1)))))
11 oveq2 6819 . . . . 5 (𝑎 = (𝑏 + 1) → (((2 · 𝐴) − 1)↑𝑎) = (((2 · 𝐴) − 1)↑(𝑏 + 1)))
12 oveq1 6818 . . . . . 6 (𝑎 = (𝑏 + 1) → (𝑎 + 1) = ((𝑏 + 1) + 1))
1312oveq2d 6827 . . . . 5 (𝑎 = (𝑏 + 1) → (𝐴 Yrm (𝑎 + 1)) = (𝐴 Yrm ((𝑏 + 1) + 1)))
1411, 13breq12d 4815 . . . 4 (𝑎 = (𝑏 + 1) → ((((2 · 𝐴) − 1)↑𝑎) ≤ (𝐴 Yrm (𝑎 + 1)) ↔ (((2 · 𝐴) − 1)↑(𝑏 + 1)) ≤ (𝐴 Yrm ((𝑏 + 1) + 1))))
1514imbi2d 329 . . 3 (𝑎 = (𝑏 + 1) → ((𝐴 ∈ (ℤ‘2) → (((2 · 𝐴) − 1)↑𝑎) ≤ (𝐴 Yrm (𝑎 + 1))) ↔ (𝐴 ∈ (ℤ‘2) → (((2 · 𝐴) − 1)↑(𝑏 + 1)) ≤ (𝐴 Yrm ((𝑏 + 1) + 1)))))
16 oveq2 6819 . . . . 5 (𝑎 = 𝑁 → (((2 · 𝐴) − 1)↑𝑎) = (((2 · 𝐴) − 1)↑𝑁))
17 oveq1 6818 . . . . . 6 (𝑎 = 𝑁 → (𝑎 + 1) = (𝑁 + 1))
1817oveq2d 6827 . . . . 5 (𝑎 = 𝑁 → (𝐴 Yrm (𝑎 + 1)) = (𝐴 Yrm (𝑁 + 1)))
1916, 18breq12d 4815 . . . 4 (𝑎 = 𝑁 → ((((2 · 𝐴) − 1)↑𝑎) ≤ (𝐴 Yrm (𝑎 + 1)) ↔ (((2 · 𝐴) − 1)↑𝑁) ≤ (𝐴 Yrm (𝑁 + 1))))
2019imbi2d 329 . . 3 (𝑎 = 𝑁 → ((𝐴 ∈ (ℤ‘2) → (((2 · 𝐴) − 1)↑𝑎) ≤ (𝐴 Yrm (𝑎 + 1))) ↔ (𝐴 ∈ (ℤ‘2) → (((2 · 𝐴) − 1)↑𝑁) ≤ (𝐴 Yrm (𝑁 + 1)))))
21 1le1 10845 . . . . 5 1 ≤ 1
2221a1i 11 . . . 4 (𝐴 ∈ (ℤ‘2) → 1 ≤ 1)
23 2cn 11281 . . . . . . 7 2 ∈ ℂ
24 eluzelcn 11889 . . . . . . 7 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℂ)
25 mulcl 10210 . . . . . . 7 ((2 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (2 · 𝐴) ∈ ℂ)
2623, 24, 25sylancr 698 . . . . . 6 (𝐴 ∈ (ℤ‘2) → (2 · 𝐴) ∈ ℂ)
27 ax-1cn 10184 . . . . . 6 1 ∈ ℂ
28 subcl 10470 . . . . . 6 (((2 · 𝐴) ∈ ℂ ∧ 1 ∈ ℂ) → ((2 · 𝐴) − 1) ∈ ℂ)
2926, 27, 28sylancl 697 . . . . 5 (𝐴 ∈ (ℤ‘2) → ((2 · 𝐴) − 1) ∈ ℂ)
3029exp0d 13194 . . . 4 (𝐴 ∈ (ℤ‘2) → (((2 · 𝐴) − 1)↑0) = 1)
31 0p1e1 11322 . . . . . 6 (0 + 1) = 1
3231oveq2i 6822 . . . . 5 (𝐴 Yrm (0 + 1)) = (𝐴 Yrm 1)
33 rmy1 37995 . . . . 5 (𝐴 ∈ (ℤ‘2) → (𝐴 Yrm 1) = 1)
3432, 33syl5eq 2804 . . . 4 (𝐴 ∈ (ℤ‘2) → (𝐴 Yrm (0 + 1)) = 1)
3522, 30, 343brtr4d 4834 . . 3 (𝐴 ∈ (ℤ‘2) → (((2 · 𝐴) − 1)↑0) ≤ (𝐴 Yrm (0 + 1)))
36 2re 11280 . . . . . . . . . 10 2 ∈ ℝ
37 eluzelre 11888 . . . . . . . . . . 11 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℝ)
3837adantl 473 . . . . . . . . . 10 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → 𝐴 ∈ ℝ)
39 remulcl 10211 . . . . . . . . . 10 ((2 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (2 · 𝐴) ∈ ℝ)
4036, 38, 39sylancr 698 . . . . . . . . 9 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → (2 · 𝐴) ∈ ℝ)
41 1re 10229 . . . . . . . . 9 1 ∈ ℝ
42 resubcl 10535 . . . . . . . . 9 (((2 · 𝐴) ∈ ℝ ∧ 1 ∈ ℝ) → ((2 · 𝐴) − 1) ∈ ℝ)
4340, 41, 42sylancl 697 . . . . . . . 8 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → ((2 · 𝐴) − 1) ∈ ℝ)
44 peano2nn0 11523 . . . . . . . . 9 (𝑏 ∈ ℕ0 → (𝑏 + 1) ∈ ℕ0)
4544adantr 472 . . . . . . . 8 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → (𝑏 + 1) ∈ ℕ0)
4643, 45reexpcld 13217 . . . . . . 7 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → (((2 · 𝐴) − 1)↑(𝑏 + 1)) ∈ ℝ)
47463adant3 1127 . . . . . 6 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ (((2 · 𝐴) − 1)↑𝑏) ≤ (𝐴 Yrm (𝑏 + 1))) → (((2 · 𝐴) − 1)↑(𝑏 + 1)) ∈ ℝ)
48 simpr 479 . . . . . . . . 9 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → 𝐴 ∈ (ℤ‘2))
49 nn0z 11590 . . . . . . . . . . 11 (𝑏 ∈ ℕ0𝑏 ∈ ℤ)
5049adantr 472 . . . . . . . . . 10 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → 𝑏 ∈ ℤ)
5150peano2zd 11675 . . . . . . . . 9 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → (𝑏 + 1) ∈ ℤ)
52 frmy 37979 . . . . . . . . . . 11 Yrm :((ℤ‘2) × ℤ)⟶ℤ
5352fovcl 6928 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ (𝑏 + 1) ∈ ℤ) → (𝐴 Yrm (𝑏 + 1)) ∈ ℤ)
5453zred 11672 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ (𝑏 + 1) ∈ ℤ) → (𝐴 Yrm (𝑏 + 1)) ∈ ℝ)
5548, 51, 54syl2anc 696 . . . . . . . 8 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → (𝐴 Yrm (𝑏 + 1)) ∈ ℝ)
5655, 43remulcld 10260 . . . . . . 7 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → ((𝐴 Yrm (𝑏 + 1)) · ((2 · 𝐴) − 1)) ∈ ℝ)
57563adant3 1127 . . . . . 6 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ (((2 · 𝐴) − 1)↑𝑏) ≤ (𝐴 Yrm (𝑏 + 1))) → ((𝐴 Yrm (𝑏 + 1)) · ((2 · 𝐴) − 1)) ∈ ℝ)
5851peano2zd 11675 . . . . . . . 8 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → ((𝑏 + 1) + 1) ∈ ℤ)
5952fovcl 6928 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ ((𝑏 + 1) + 1) ∈ ℤ) → (𝐴 Yrm ((𝑏 + 1) + 1)) ∈ ℤ)
6059zred 11672 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ ((𝑏 + 1) + 1) ∈ ℤ) → (𝐴 Yrm ((𝑏 + 1) + 1)) ∈ ℝ)
6148, 58, 60syl2anc 696 . . . . . . 7 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → (𝐴 Yrm ((𝑏 + 1) + 1)) ∈ ℝ)
62613adant3 1127 . . . . . 6 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ (((2 · 𝐴) − 1)↑𝑏) ≤ (𝐴 Yrm (𝑏 + 1))) → (𝐴 Yrm ((𝑏 + 1) + 1)) ∈ ℝ)
63293ad2ant2 1129 . . . . . . . 8 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ (((2 · 𝐴) − 1)↑𝑏) ≤ (𝐴 Yrm (𝑏 + 1))) → ((2 · 𝐴) − 1) ∈ ℂ)
64 simp1 1131 . . . . . . . 8 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ (((2 · 𝐴) − 1)↑𝑏) ≤ (𝐴 Yrm (𝑏 + 1))) → 𝑏 ∈ ℕ0)
6563, 64expp1d 13201 . . . . . . 7 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ (((2 · 𝐴) − 1)↑𝑏) ≤ (𝐴 Yrm (𝑏 + 1))) → (((2 · 𝐴) − 1)↑(𝑏 + 1)) = ((((2 · 𝐴) − 1)↑𝑏) · ((2 · 𝐴) − 1)))
66 simpl 474 . . . . . . . . . 10 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → 𝑏 ∈ ℕ0)
6743, 66reexpcld 13217 . . . . . . . . 9 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → (((2 · 𝐴) − 1)↑𝑏) ∈ ℝ)
68 2nn 11375 . . . . . . . . . . . 12 2 ∈ ℕ
69 eluz2nn 11917 . . . . . . . . . . . . 13 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℕ)
7069adantl 473 . . . . . . . . . . . 12 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → 𝐴 ∈ ℕ)
71 nnmulcl 11233 . . . . . . . . . . . 12 ((2 ∈ ℕ ∧ 𝐴 ∈ ℕ) → (2 · 𝐴) ∈ ℕ)
7268, 70, 71sylancr 698 . . . . . . . . . . 11 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → (2 · 𝐴) ∈ ℕ)
73 nnm1nn0 11524 . . . . . . . . . . 11 ((2 · 𝐴) ∈ ℕ → ((2 · 𝐴) − 1) ∈ ℕ0)
74 nn0ge0 11508 . . . . . . . . . . 11 (((2 · 𝐴) − 1) ∈ ℕ0 → 0 ≤ ((2 · 𝐴) − 1))
7572, 73, 743syl 18 . . . . . . . . . 10 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → 0 ≤ ((2 · 𝐴) − 1))
7643, 75jca 555 . . . . . . . . 9 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → (((2 · 𝐴) − 1) ∈ ℝ ∧ 0 ≤ ((2 · 𝐴) − 1)))
7767, 55, 763jca 1123 . . . . . . . 8 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → ((((2 · 𝐴) − 1)↑𝑏) ∈ ℝ ∧ (𝐴 Yrm (𝑏 + 1)) ∈ ℝ ∧ (((2 · 𝐴) − 1) ∈ ℝ ∧ 0 ≤ ((2 · 𝐴) − 1))))
78 lemul1a 11067 . . . . . . . 8 ((((((2 · 𝐴) − 1)↑𝑏) ∈ ℝ ∧ (𝐴 Yrm (𝑏 + 1)) ∈ ℝ ∧ (((2 · 𝐴) − 1) ∈ ℝ ∧ 0 ≤ ((2 · 𝐴) − 1))) ∧ (((2 · 𝐴) − 1)↑𝑏) ≤ (𝐴 Yrm (𝑏 + 1))) → ((((2 · 𝐴) − 1)↑𝑏) · ((2 · 𝐴) − 1)) ≤ ((𝐴 Yrm (𝑏 + 1)) · ((2 · 𝐴) − 1)))
7977, 78stoic3 1848 . . . . . . 7 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ (((2 · 𝐴) − 1)↑𝑏) ≤ (𝐴 Yrm (𝑏 + 1))) → ((((2 · 𝐴) − 1)↑𝑏) · ((2 · 𝐴) − 1)) ≤ ((𝐴 Yrm (𝑏 + 1)) · ((2 · 𝐴) − 1)))
8065, 79eqbrtrd 4824 . . . . . 6 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ (((2 · 𝐴) − 1)↑𝑏) ≤ (𝐴 Yrm (𝑏 + 1))) → (((2 · 𝐴) − 1)↑(𝑏 + 1)) ≤ ((𝐴 Yrm (𝑏 + 1)) · ((2 · 𝐴) − 1)))
81 nn0cn 11492 . . . . . . . . . . . . 13 (𝑏 ∈ ℕ0𝑏 ∈ ℂ)
8281adantr 472 . . . . . . . . . . . 12 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → 𝑏 ∈ ℂ)
83 pncan 10477 . . . . . . . . . . . 12 ((𝑏 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑏 + 1) − 1) = 𝑏)
8482, 27, 83sylancl 697 . . . . . . . . . . 11 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → ((𝑏 + 1) − 1) = 𝑏)
8584oveq2d 6827 . . . . . . . . . 10 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → (𝐴 Yrm ((𝑏 + 1) − 1)) = (𝐴 Yrm 𝑏))
8652fovcl 6928 . . . . . . . . . . . 12 ((𝐴 ∈ (ℤ‘2) ∧ 𝑏 ∈ ℤ) → (𝐴 Yrm 𝑏) ∈ ℤ)
8786zred 11672 . . . . . . . . . . 11 ((𝐴 ∈ (ℤ‘2) ∧ 𝑏 ∈ ℤ) → (𝐴 Yrm 𝑏) ∈ ℝ)
8848, 50, 87syl2anc 696 . . . . . . . . . 10 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → (𝐴 Yrm 𝑏) ∈ ℝ)
8985, 88eqeltrd 2837 . . . . . . . . 9 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → (𝐴 Yrm ((𝑏 + 1) − 1)) ∈ ℝ)
90 remulcl 10211 . . . . . . . . . 10 (((𝐴 Yrm (𝑏 + 1)) ∈ ℝ ∧ 1 ∈ ℝ) → ((𝐴 Yrm (𝑏 + 1)) · 1) ∈ ℝ)
9155, 41, 90sylancl 697 . . . . . . . . 9 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → ((𝐴 Yrm (𝑏 + 1)) · 1) ∈ ℝ)
9240, 55remulcld 10260 . . . . . . . . 9 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → ((2 · 𝐴) · (𝐴 Yrm (𝑏 + 1))) ∈ ℝ)
93 nn0re 11491 . . . . . . . . . . . . 13 (𝑏 ∈ ℕ0𝑏 ∈ ℝ)
9493adantr 472 . . . . . . . . . . . 12 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → 𝑏 ∈ ℝ)
9594lep1d 11145 . . . . . . . . . . 11 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → 𝑏 ≤ (𝑏 + 1))
96 lermy 38022 . . . . . . . . . . . 12 ((𝐴 ∈ (ℤ‘2) ∧ 𝑏 ∈ ℤ ∧ (𝑏 + 1) ∈ ℤ) → (𝑏 ≤ (𝑏 + 1) ↔ (𝐴 Yrm 𝑏) ≤ (𝐴 Yrm (𝑏 + 1))))
9748, 50, 51, 96syl3anc 1477 . . . . . . . . . . 11 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → (𝑏 ≤ (𝑏 + 1) ↔ (𝐴 Yrm 𝑏) ≤ (𝐴 Yrm (𝑏 + 1))))
9895, 97mpbid 222 . . . . . . . . . 10 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → (𝐴 Yrm 𝑏) ≤ (𝐴 Yrm (𝑏 + 1)))
9955recnd 10258 . . . . . . . . . . 11 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → (𝐴 Yrm (𝑏 + 1)) ∈ ℂ)
10099mulid1d 10247 . . . . . . . . . 10 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → ((𝐴 Yrm (𝑏 + 1)) · 1) = (𝐴 Yrm (𝑏 + 1)))
10198, 85, 1003brtr4d 4834 . . . . . . . . 9 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → (𝐴 Yrm ((𝑏 + 1) − 1)) ≤ ((𝐴 Yrm (𝑏 + 1)) · 1))
10289, 91, 92, 101lesub2dd 10834 . . . . . . . 8 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → (((2 · 𝐴) · (𝐴 Yrm (𝑏 + 1))) − ((𝐴 Yrm (𝑏 + 1)) · 1)) ≤ (((2 · 𝐴) · (𝐴 Yrm (𝑏 + 1))) − (𝐴 Yrm ((𝑏 + 1) − 1))))
10340recnd 10258 . . . . . . . . . 10 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → (2 · 𝐴) ∈ ℂ)
10427a1i 11 . . . . . . . . . 10 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → 1 ∈ ℂ)
10599, 103, 104subdid 10676 . . . . . . . . 9 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → ((𝐴 Yrm (𝑏 + 1)) · ((2 · 𝐴) − 1)) = (((𝐴 Yrm (𝑏 + 1)) · (2 · 𝐴)) − ((𝐴 Yrm (𝑏 + 1)) · 1)))
10699, 103mulcomd 10251 . . . . . . . . . 10 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → ((𝐴 Yrm (𝑏 + 1)) · (2 · 𝐴)) = ((2 · 𝐴) · (𝐴 Yrm (𝑏 + 1))))
107106oveq1d 6826 . . . . . . . . 9 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → (((𝐴 Yrm (𝑏 + 1)) · (2 · 𝐴)) − ((𝐴 Yrm (𝑏 + 1)) · 1)) = (((2 · 𝐴) · (𝐴 Yrm (𝑏 + 1))) − ((𝐴 Yrm (𝑏 + 1)) · 1)))
108105, 107eqtrd 2792 . . . . . . . 8 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → ((𝐴 Yrm (𝑏 + 1)) · ((2 · 𝐴) − 1)) = (((2 · 𝐴) · (𝐴 Yrm (𝑏 + 1))) − ((𝐴 Yrm (𝑏 + 1)) · 1)))
109 rmyluc2 38003 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ (𝑏 + 1) ∈ ℤ) → (𝐴 Yrm ((𝑏 + 1) + 1)) = (((2 · 𝐴) · (𝐴 Yrm (𝑏 + 1))) − (𝐴 Yrm ((𝑏 + 1) − 1))))
11048, 51, 109syl2anc 696 . . . . . . . 8 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → (𝐴 Yrm ((𝑏 + 1) + 1)) = (((2 · 𝐴) · (𝐴 Yrm (𝑏 + 1))) − (𝐴 Yrm ((𝑏 + 1) − 1))))
111102, 108, 1103brtr4d 4834 . . . . . . 7 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2)) → ((𝐴 Yrm (𝑏 + 1)) · ((2 · 𝐴) − 1)) ≤ (𝐴 Yrm ((𝑏 + 1) + 1)))
1121113adant3 1127 . . . . . 6 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ (((2 · 𝐴) − 1)↑𝑏) ≤ (𝐴 Yrm (𝑏 + 1))) → ((𝐴 Yrm (𝑏 + 1)) · ((2 · 𝐴) − 1)) ≤ (𝐴 Yrm ((𝑏 + 1) + 1)))
11347, 57, 62, 80, 112letrd 10384 . . . . 5 ((𝑏 ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ (((2 · 𝐴) − 1)↑𝑏) ≤ (𝐴 Yrm (𝑏 + 1))) → (((2 · 𝐴) − 1)↑(𝑏 + 1)) ≤ (𝐴 Yrm ((𝑏 + 1) + 1)))
1141133exp 1113 . . . 4 (𝑏 ∈ ℕ0 → (𝐴 ∈ (ℤ‘2) → ((((2 · 𝐴) − 1)↑𝑏) ≤ (𝐴 Yrm (𝑏 + 1)) → (((2 · 𝐴) − 1)↑(𝑏 + 1)) ≤ (𝐴 Yrm ((𝑏 + 1) + 1)))))
115114a2d 29 . . 3 (𝑏 ∈ ℕ0 → ((𝐴 ∈ (ℤ‘2) → (((2 · 𝐴) − 1)↑𝑏) ≤ (𝐴 Yrm (𝑏 + 1))) → (𝐴 ∈ (ℤ‘2) → (((2 · 𝐴) − 1)↑(𝑏 + 1)) ≤ (𝐴 Yrm ((𝑏 + 1) + 1)))))
1165, 10, 15, 20, 35, 115nn0ind 11662 . 2 (𝑁 ∈ ℕ0 → (𝐴 ∈ (ℤ‘2) → (((2 · 𝐴) − 1)↑𝑁) ≤ (𝐴 Yrm (𝑁 + 1))))
117116impcom 445 1 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → (((2 · 𝐴) − 1)↑𝑁) ≤ (𝐴 Yrm (𝑁 + 1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1072   = wceq 1630  wcel 2137   class class class wbr 4802  cfv 6047  (class class class)co 6811  cc 10124  cr 10125  0cc0 10126  1c1 10127   + caddc 10129   · cmul 10131  cle 10265  cmin 10456  cn 11210  2c2 11260  0cn0 11482  cz 11567  cuz 11877  cexp 13052   Yrm crmy 37965
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1986  ax-6 2052  ax-7 2088  ax-8 2139  ax-9 2146  ax-10 2166  ax-11 2181  ax-12 2194  ax-13 2389  ax-ext 2738  ax-rep 4921  ax-sep 4931  ax-nul 4939  ax-pow 4990  ax-pr 5053  ax-un 7112  ax-inf2 8709  ax-cnex 10182  ax-resscn 10183  ax-1cn 10184  ax-icn 10185  ax-addcl 10186  ax-addrcl 10187  ax-mulcl 10188  ax-mulrcl 10189  ax-mulcom 10190  ax-addass 10191  ax-mulass 10192  ax-distr 10193  ax-i2m1 10194  ax-1ne0 10195  ax-1rid 10196  ax-rnegex 10197  ax-rrecex 10198  ax-cnre 10199  ax-pre-lttri 10200  ax-pre-lttrn 10201  ax-pre-ltadd 10202  ax-pre-mulgt0 10203  ax-pre-sup 10204  ax-addf 10205  ax-mulf 10206
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1633  df-fal 1636  df-ex 1852  df-nf 1857  df-sb 2045  df-eu 2609  df-mo 2610  df-clab 2745  df-cleq 2751  df-clel 2754  df-nfc 2889  df-ne 2931  df-nel 3034  df-ral 3053  df-rex 3054  df-reu 3055  df-rmo 3056  df-rab 3057  df-v 3340  df-sbc 3575  df-csb 3673  df-dif 3716  df-un 3718  df-in 3720  df-ss 3727  df-pss 3729  df-nul 4057  df-if 4229  df-pw 4302  df-sn 4320  df-pr 4322  df-tp 4324  df-op 4326  df-uni 4587  df-int 4626  df-iun 4672  df-iin 4673  df-br 4803  df-opab 4863  df-mpt 4880  df-tr 4903  df-id 5172  df-eprel 5177  df-po 5185  df-so 5186  df-fr 5223  df-se 5224  df-we 5225  df-xp 5270  df-rel 5271  df-cnv 5272  df-co 5273  df-dm 5274  df-rn 5275  df-res 5276  df-ima 5277  df-pred 5839  df-ord 5885  df-on 5886  df-lim 5887  df-suc 5888  df-iota 6010  df-fun 6049  df-fn 6050  df-f 6051  df-f1 6052  df-fo 6053  df-f1o 6054  df-fv 6055  df-isom 6056  df-riota 6772  df-ov 6814  df-oprab 6815  df-mpt2 6816  df-of 7060  df-om 7229  df-1st 7331  df-2nd 7332  df-supp 7462  df-wrecs 7574  df-recs 7635  df-rdg 7673  df-1o 7727  df-2o 7728  df-oadd 7731  df-omul 7732  df-er 7909  df-map 8023  df-pm 8024  df-ixp 8073  df-en 8120  df-dom 8121  df-sdom 8122  df-fin 8123  df-fsupp 8439  df-fi 8480  df-sup 8511  df-inf 8512  df-oi 8578  df-card 8953  df-acn 8956  df-cda 9180  df-pnf 10266  df-mnf 10267  df-xr 10268  df-ltxr 10269  df-le 10270  df-sub 10458  df-neg 10459  df-div 10875  df-nn 11211  df-2 11269  df-3 11270  df-4 11271  df-5 11272  df-6 11273  df-7 11274  df-8 11275  df-9 11276  df-n0 11483  df-xnn0 11554  df-z 11568  df-dec 11684  df-uz 11878  df-q 11980  df-rp 12024  df-xneg 12137  df-xadd 12138  df-xmul 12139  df-ioo 12370  df-ioc 12371  df-ico 12372  df-icc 12373  df-fz 12518  df-fzo 12658  df-fl 12785  df-mod 12861  df-seq 12994  df-exp 13053  df-fac 13253  df-bc 13282  df-hash 13310  df-shft 14004  df-cj 14036  df-re 14037  df-im 14038  df-sqrt 14172  df-abs 14173  df-limsup 14399  df-clim 14416  df-rlim 14417  df-sum 14614  df-ef 14995  df-sin 14997  df-cos 14998  df-pi 15000  df-dvds 15181  df-gcd 15417  df-numer 15643  df-denom 15644  df-struct 16059  df-ndx 16060  df-slot 16061  df-base 16063  df-sets 16064  df-ress 16065  df-plusg 16154  df-mulr 16155  df-starv 16156  df-sca 16157  df-vsca 16158  df-ip 16159  df-tset 16160  df-ple 16161  df-ds 16164  df-unif 16165  df-hom 16166  df-cco 16167  df-rest 16283  df-topn 16284  df-0g 16302  df-gsum 16303  df-topgen 16304  df-pt 16305  df-prds 16308  df-xrs 16362  df-qtop 16367  df-imas 16368  df-xps 16370  df-mre 16446  df-mrc 16447  df-acs 16449  df-mgm 17441  df-sgrp 17483  df-mnd 17494  df-submnd 17535  df-mulg 17740  df-cntz 17948  df-cmn 18393  df-psmet 19938  df-xmet 19939  df-met 19940  df-bl 19941  df-mopn 19942  df-fbas 19943  df-fg 19944  df-cnfld 19947  df-top 20899  df-topon 20916  df-topsp 20937  df-bases 20950  df-cld 21023  df-ntr 21024  df-cls 21025  df-nei 21102  df-lp 21140  df-perf 21141  df-cn 21231  df-cnp 21232  df-haus 21319  df-tx 21565  df-hmeo 21758  df-fil 21849  df-fm 21941  df-flim 21942  df-flf 21943  df-xms 22324  df-ms 22325  df-tms 22326  df-cncf 22880  df-limc 23827  df-dv 23828  df-log 24500  df-squarenn 37905  df-pell1qr 37906  df-pell14qr 37907  df-pell1234qr 37908  df-pellfund 37909  df-rmx 37966  df-rmy 37967
This theorem is referenced by:  jm3.1lem1  38084
  Copyright terms: Public domain W3C validator