![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > jensenlem1 | Structured version Visualization version GIF version |
Description: Lemma for jensen 24936. (Contributed by Mario Carneiro, 4-Jun-2016.) |
Ref | Expression |
---|---|
jensen.1 | ⊢ (𝜑 → 𝐷 ⊆ ℝ) |
jensen.2 | ⊢ (𝜑 → 𝐹:𝐷⟶ℝ) |
jensen.3 | ⊢ ((𝜑 ∧ (𝑎 ∈ 𝐷 ∧ 𝑏 ∈ 𝐷)) → (𝑎[,]𝑏) ⊆ 𝐷) |
jensen.4 | ⊢ (𝜑 → 𝐴 ∈ Fin) |
jensen.5 | ⊢ (𝜑 → 𝑇:𝐴⟶(0[,)+∞)) |
jensen.6 | ⊢ (𝜑 → 𝑋:𝐴⟶𝐷) |
jensen.7 | ⊢ (𝜑 → 0 < (ℂfld Σg 𝑇)) |
jensen.8 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ∧ 𝑡 ∈ (0[,]1))) → (𝐹‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) ≤ ((𝑡 · (𝐹‘𝑥)) + ((1 − 𝑡) · (𝐹‘𝑦)))) |
jensenlem.1 | ⊢ (𝜑 → ¬ 𝑧 ∈ 𝐵) |
jensenlem.2 | ⊢ (𝜑 → (𝐵 ∪ {𝑧}) ⊆ 𝐴) |
jensenlem.s | ⊢ 𝑆 = (ℂfld Σg (𝑇 ↾ 𝐵)) |
jensenlem.l | ⊢ 𝐿 = (ℂfld Σg (𝑇 ↾ (𝐵 ∪ {𝑧}))) |
Ref | Expression |
---|---|
jensenlem1 | ⊢ (𝜑 → 𝐿 = (𝑆 + (𝑇‘𝑧))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnfldbas 19965 | . . . 4 ⊢ ℂ = (Base‘ℂfld) | |
2 | cnfldadd 19966 | . . . 4 ⊢ + = (+g‘ℂfld) | |
3 | cnring 19983 | . . . . 5 ⊢ ℂfld ∈ Ring | |
4 | ringcmn 18789 | . . . . 5 ⊢ (ℂfld ∈ Ring → ℂfld ∈ CMnd) | |
5 | 3, 4 | mp1i 13 | . . . 4 ⊢ (𝜑 → ℂfld ∈ CMnd) |
6 | jensen.4 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
7 | jensenlem.2 | . . . . . 6 ⊢ (𝜑 → (𝐵 ∪ {𝑧}) ⊆ 𝐴) | |
8 | 7 | unssad 3941 | . . . . 5 ⊢ (𝜑 → 𝐵 ⊆ 𝐴) |
9 | ssfi 8336 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊆ 𝐴) → 𝐵 ∈ Fin) | |
10 | 6, 8, 9 | syl2anc 573 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ Fin) |
11 | rge0ssre 12487 | . . . . . 6 ⊢ (0[,)+∞) ⊆ ℝ | |
12 | ax-resscn 10195 | . . . . . 6 ⊢ ℝ ⊆ ℂ | |
13 | 11, 12 | sstri 3761 | . . . . 5 ⊢ (0[,)+∞) ⊆ ℂ |
14 | 8 | sselda 3752 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐴) |
15 | jensen.5 | . . . . . . 7 ⊢ (𝜑 → 𝑇:𝐴⟶(0[,)+∞)) | |
16 | 15 | ffvelrnda 6502 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑇‘𝑥) ∈ (0[,)+∞)) |
17 | 14, 16 | syldan 579 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑇‘𝑥) ∈ (0[,)+∞)) |
18 | 13, 17 | sseldi 3750 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑇‘𝑥) ∈ ℂ) |
19 | 7 | unssbd 3942 | . . . . 5 ⊢ (𝜑 → {𝑧} ⊆ 𝐴) |
20 | vex 3354 | . . . . . 6 ⊢ 𝑧 ∈ V | |
21 | 20 | snss 4451 | . . . . 5 ⊢ (𝑧 ∈ 𝐴 ↔ {𝑧} ⊆ 𝐴) |
22 | 19, 21 | sylibr 224 | . . . 4 ⊢ (𝜑 → 𝑧 ∈ 𝐴) |
23 | jensenlem.1 | . . . 4 ⊢ (𝜑 → ¬ 𝑧 ∈ 𝐵) | |
24 | 15, 22 | ffvelrnd 6503 | . . . . 5 ⊢ (𝜑 → (𝑇‘𝑧) ∈ (0[,)+∞)) |
25 | 13, 24 | sseldi 3750 | . . . 4 ⊢ (𝜑 → (𝑇‘𝑧) ∈ ℂ) |
26 | fveq2 6332 | . . . 4 ⊢ (𝑥 = 𝑧 → (𝑇‘𝑥) = (𝑇‘𝑧)) | |
27 | 1, 2, 5, 10, 18, 22, 23, 25, 26 | gsumunsn 18566 | . . 3 ⊢ (𝜑 → (ℂfld Σg (𝑥 ∈ (𝐵 ∪ {𝑧}) ↦ (𝑇‘𝑥))) = ((ℂfld Σg (𝑥 ∈ 𝐵 ↦ (𝑇‘𝑥))) + (𝑇‘𝑧))) |
28 | 15, 7 | feqresmpt 6392 | . . . 4 ⊢ (𝜑 → (𝑇 ↾ (𝐵 ∪ {𝑧})) = (𝑥 ∈ (𝐵 ∪ {𝑧}) ↦ (𝑇‘𝑥))) |
29 | 28 | oveq2d 6809 | . . 3 ⊢ (𝜑 → (ℂfld Σg (𝑇 ↾ (𝐵 ∪ {𝑧}))) = (ℂfld Σg (𝑥 ∈ (𝐵 ∪ {𝑧}) ↦ (𝑇‘𝑥)))) |
30 | 15, 8 | feqresmpt 6392 | . . . . 5 ⊢ (𝜑 → (𝑇 ↾ 𝐵) = (𝑥 ∈ 𝐵 ↦ (𝑇‘𝑥))) |
31 | 30 | oveq2d 6809 | . . . 4 ⊢ (𝜑 → (ℂfld Σg (𝑇 ↾ 𝐵)) = (ℂfld Σg (𝑥 ∈ 𝐵 ↦ (𝑇‘𝑥)))) |
32 | 31 | oveq1d 6808 | . . 3 ⊢ (𝜑 → ((ℂfld Σg (𝑇 ↾ 𝐵)) + (𝑇‘𝑧)) = ((ℂfld Σg (𝑥 ∈ 𝐵 ↦ (𝑇‘𝑥))) + (𝑇‘𝑧))) |
33 | 27, 29, 32 | 3eqtr4d 2815 | . 2 ⊢ (𝜑 → (ℂfld Σg (𝑇 ↾ (𝐵 ∪ {𝑧}))) = ((ℂfld Σg (𝑇 ↾ 𝐵)) + (𝑇‘𝑧))) |
34 | jensenlem.l | . 2 ⊢ 𝐿 = (ℂfld Σg (𝑇 ↾ (𝐵 ∪ {𝑧}))) | |
35 | jensenlem.s | . . 3 ⊢ 𝑆 = (ℂfld Σg (𝑇 ↾ 𝐵)) | |
36 | 35 | oveq1i 6803 | . 2 ⊢ (𝑆 + (𝑇‘𝑧)) = ((ℂfld Σg (𝑇 ↾ 𝐵)) + (𝑇‘𝑧)) |
37 | 33, 34, 36 | 3eqtr4g 2830 | 1 ⊢ (𝜑 → 𝐿 = (𝑆 + (𝑇‘𝑧))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 382 ∧ w3a 1071 = wceq 1631 ∈ wcel 2145 ∪ cun 3721 ⊆ wss 3723 {csn 4316 class class class wbr 4786 ↦ cmpt 4863 ↾ cres 5251 ⟶wf 6027 ‘cfv 6031 (class class class)co 6793 Fincfn 8109 ℂcc 10136 ℝcr 10137 0cc0 10138 1c1 10139 + caddc 10141 · cmul 10143 +∞cpnf 10273 < clt 10276 ≤ cle 10277 − cmin 10468 [,)cico 12382 [,]cicc 12383 Σg cgsu 16309 CMndccmn 18400 Ringcrg 18755 ℂfldccnfld 19961 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4904 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 ax-inf2 8702 ax-cnex 10194 ax-resscn 10195 ax-1cn 10196 ax-icn 10197 ax-addcl 10198 ax-addrcl 10199 ax-mulcl 10200 ax-mulrcl 10201 ax-mulcom 10202 ax-addass 10203 ax-mulass 10204 ax-distr 10205 ax-i2m1 10206 ax-1ne0 10207 ax-1rid 10208 ax-rnegex 10209 ax-rrecex 10210 ax-cnre 10211 ax-pre-lttri 10212 ax-pre-lttrn 10213 ax-pre-ltadd 10214 ax-pre-mulgt0 10215 ax-addf 10217 ax-mulf 10218 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-tp 4321 df-op 4323 df-uni 4575 df-int 4612 df-iun 4656 df-iin 4657 df-br 4787 df-opab 4847 df-mpt 4864 df-tr 4887 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-se 5209 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-isom 6040 df-riota 6754 df-ov 6796 df-oprab 6797 df-mpt2 6798 df-of 7044 df-om 7213 df-1st 7315 df-2nd 7316 df-supp 7447 df-wrecs 7559 df-recs 7621 df-rdg 7659 df-1o 7713 df-oadd 7717 df-er 7896 df-en 8110 df-dom 8111 df-sdom 8112 df-fin 8113 df-fsupp 8432 df-oi 8571 df-card 8965 df-pnf 10278 df-mnf 10279 df-xr 10280 df-ltxr 10281 df-le 10282 df-sub 10470 df-neg 10471 df-nn 11223 df-2 11281 df-3 11282 df-4 11283 df-5 11284 df-6 11285 df-7 11286 df-8 11287 df-9 11288 df-n0 11495 df-z 11580 df-dec 11696 df-uz 11889 df-ico 12386 df-fz 12534 df-fzo 12674 df-seq 13009 df-hash 13322 df-struct 16066 df-ndx 16067 df-slot 16068 df-base 16070 df-sets 16071 df-ress 16072 df-plusg 16162 df-mulr 16163 df-starv 16164 df-tset 16168 df-ple 16169 df-ds 16172 df-unif 16173 df-0g 16310 df-gsum 16311 df-mre 16454 df-mrc 16455 df-acs 16457 df-mgm 17450 df-sgrp 17492 df-mnd 17503 df-submnd 17544 df-grp 17633 df-minusg 17634 df-mulg 17749 df-cntz 17957 df-cmn 18402 df-abl 18403 df-mgp 18698 df-ur 18710 df-ring 18757 df-cring 18758 df-cnfld 19962 |
This theorem is referenced by: jensenlem2 24935 |
Copyright terms: Public domain | W3C validator |