Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  jensenlem1 Structured version   Visualization version   GIF version

Theorem jensenlem1 24934
 Description: Lemma for jensen 24936. (Contributed by Mario Carneiro, 4-Jun-2016.)
Hypotheses
Ref Expression
jensen.1 (𝜑𝐷 ⊆ ℝ)
jensen.2 (𝜑𝐹:𝐷⟶ℝ)
jensen.3 ((𝜑 ∧ (𝑎𝐷𝑏𝐷)) → (𝑎[,]𝑏) ⊆ 𝐷)
jensen.4 (𝜑𝐴 ∈ Fin)
jensen.5 (𝜑𝑇:𝐴⟶(0[,)+∞))
jensen.6 (𝜑𝑋:𝐴𝐷)
jensen.7 (𝜑 → 0 < (ℂfld Σg 𝑇))
jensen.8 ((𝜑 ∧ (𝑥𝐷𝑦𝐷𝑡 ∈ (0[,]1))) → (𝐹‘((𝑡 · 𝑥) + ((1 − 𝑡) · 𝑦))) ≤ ((𝑡 · (𝐹𝑥)) + ((1 − 𝑡) · (𝐹𝑦))))
jensenlem.1 (𝜑 → ¬ 𝑧𝐵)
jensenlem.2 (𝜑 → (𝐵 ∪ {𝑧}) ⊆ 𝐴)
jensenlem.s 𝑆 = (ℂfld Σg (𝑇𝐵))
jensenlem.l 𝐿 = (ℂfld Σg (𝑇 ↾ (𝐵 ∪ {𝑧})))
Assertion
Ref Expression
jensenlem1 (𝜑𝐿 = (𝑆 + (𝑇𝑧)))
Distinct variable groups:   𝑎,𝑏,𝑡,𝑥,𝑦,𝐴   𝐷,𝑎,𝑏,𝑡,𝑥,𝑦   𝜑,𝑎,𝑏,𝑡,𝑥,𝑦   𝐹,𝑎,𝑏,𝑡,𝑥,𝑦   𝑇,𝑎,𝑏,𝑡,𝑥,𝑦   𝑋,𝑎,𝑏,𝑡,𝑥,𝑦   𝑧,𝑎,𝐵,𝑏,𝑡,𝑥,𝑦   𝑡,𝐿,𝑥,𝑦   𝑆,𝑎,𝑏,𝑡,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑧)   𝐴(𝑧)   𝐷(𝑧)   𝑆(𝑧)   𝑇(𝑧)   𝐹(𝑧)   𝐿(𝑧,𝑎,𝑏)   𝑋(𝑧)

Proof of Theorem jensenlem1
StepHypRef Expression
1 cnfldbas 19965 . . . 4 ℂ = (Base‘ℂfld)
2 cnfldadd 19966 . . . 4 + = (+g‘ℂfld)
3 cnring 19983 . . . . 5 fld ∈ Ring
4 ringcmn 18789 . . . . 5 (ℂfld ∈ Ring → ℂfld ∈ CMnd)
53, 4mp1i 13 . . . 4 (𝜑 → ℂfld ∈ CMnd)
6 jensen.4 . . . . 5 (𝜑𝐴 ∈ Fin)
7 jensenlem.2 . . . . . 6 (𝜑 → (𝐵 ∪ {𝑧}) ⊆ 𝐴)
87unssad 3941 . . . . 5 (𝜑𝐵𝐴)
9 ssfi 8336 . . . . 5 ((𝐴 ∈ Fin ∧ 𝐵𝐴) → 𝐵 ∈ Fin)
106, 8, 9syl2anc 573 . . . 4 (𝜑𝐵 ∈ Fin)
11 rge0ssre 12487 . . . . . 6 (0[,)+∞) ⊆ ℝ
12 ax-resscn 10195 . . . . . 6 ℝ ⊆ ℂ
1311, 12sstri 3761 . . . . 5 (0[,)+∞) ⊆ ℂ
148sselda 3752 . . . . . 6 ((𝜑𝑥𝐵) → 𝑥𝐴)
15 jensen.5 . . . . . . 7 (𝜑𝑇:𝐴⟶(0[,)+∞))
1615ffvelrnda 6502 . . . . . 6 ((𝜑𝑥𝐴) → (𝑇𝑥) ∈ (0[,)+∞))
1714, 16syldan 579 . . . . 5 ((𝜑𝑥𝐵) → (𝑇𝑥) ∈ (0[,)+∞))
1813, 17sseldi 3750 . . . 4 ((𝜑𝑥𝐵) → (𝑇𝑥) ∈ ℂ)
197unssbd 3942 . . . . 5 (𝜑 → {𝑧} ⊆ 𝐴)
20 vex 3354 . . . . . 6 𝑧 ∈ V
2120snss 4451 . . . . 5 (𝑧𝐴 ↔ {𝑧} ⊆ 𝐴)
2219, 21sylibr 224 . . . 4 (𝜑𝑧𝐴)
23 jensenlem.1 . . . 4 (𝜑 → ¬ 𝑧𝐵)
2415, 22ffvelrnd 6503 . . . . 5 (𝜑 → (𝑇𝑧) ∈ (0[,)+∞))
2513, 24sseldi 3750 . . . 4 (𝜑 → (𝑇𝑧) ∈ ℂ)
26 fveq2 6332 . . . 4 (𝑥 = 𝑧 → (𝑇𝑥) = (𝑇𝑧))
271, 2, 5, 10, 18, 22, 23, 25, 26gsumunsn 18566 . . 3 (𝜑 → (ℂfld Σg (𝑥 ∈ (𝐵 ∪ {𝑧}) ↦ (𝑇𝑥))) = ((ℂfld Σg (𝑥𝐵 ↦ (𝑇𝑥))) + (𝑇𝑧)))
2815, 7feqresmpt 6392 . . . 4 (𝜑 → (𝑇 ↾ (𝐵 ∪ {𝑧})) = (𝑥 ∈ (𝐵 ∪ {𝑧}) ↦ (𝑇𝑥)))
2928oveq2d 6809 . . 3 (𝜑 → (ℂfld Σg (𝑇 ↾ (𝐵 ∪ {𝑧}))) = (ℂfld Σg (𝑥 ∈ (𝐵 ∪ {𝑧}) ↦ (𝑇𝑥))))
3015, 8feqresmpt 6392 . . . . 5 (𝜑 → (𝑇𝐵) = (𝑥𝐵 ↦ (𝑇𝑥)))
3130oveq2d 6809 . . . 4 (𝜑 → (ℂfld Σg (𝑇𝐵)) = (ℂfld Σg (𝑥𝐵 ↦ (𝑇𝑥))))
3231oveq1d 6808 . . 3 (𝜑 → ((ℂfld Σg (𝑇𝐵)) + (𝑇𝑧)) = ((ℂfld Σg (𝑥𝐵 ↦ (𝑇𝑥))) + (𝑇𝑧)))
3327, 29, 323eqtr4d 2815 . 2 (𝜑 → (ℂfld Σg (𝑇 ↾ (𝐵 ∪ {𝑧}))) = ((ℂfld Σg (𝑇𝐵)) + (𝑇𝑧)))
34 jensenlem.l . 2 𝐿 = (ℂfld Σg (𝑇 ↾ (𝐵 ∪ {𝑧})))
35 jensenlem.s . . 3 𝑆 = (ℂfld Σg (𝑇𝐵))
3635oveq1i 6803 . 2 (𝑆 + (𝑇𝑧)) = ((ℂfld Σg (𝑇𝐵)) + (𝑇𝑧))
3733, 34, 363eqtr4g 2830 1 (𝜑𝐿 = (𝑆 + (𝑇𝑧)))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 382   ∧ w3a 1071   = wceq 1631   ∈ wcel 2145   ∪ cun 3721   ⊆ wss 3723  {csn 4316   class class class wbr 4786   ↦ cmpt 4863   ↾ cres 5251  ⟶wf 6027  ‘cfv 6031  (class class class)co 6793  Fincfn 8109  ℂcc 10136  ℝcr 10137  0cc0 10138  1c1 10139   + caddc 10141   · cmul 10143  +∞cpnf 10273   < clt 10276   ≤ cle 10277   − cmin 10468  [,)cico 12382  [,]cicc 12383   Σg cgsu 16309  CMndccmn 18400  Ringcrg 18755  ℂfldccnfld 19961 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-inf2 8702  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215  ax-addf 10217  ax-mulf 10218 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-iin 4657  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-se 5209  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-isom 6040  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-of 7044  df-om 7213  df-1st 7315  df-2nd 7316  df-supp 7447  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-1o 7713  df-oadd 7717  df-er 7896  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-fsupp 8432  df-oi 8571  df-card 8965  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-nn 11223  df-2 11281  df-3 11282  df-4 11283  df-5 11284  df-6 11285  df-7 11286  df-8 11287  df-9 11288  df-n0 11495  df-z 11580  df-dec 11696  df-uz 11889  df-ico 12386  df-fz 12534  df-fzo 12674  df-seq 13009  df-hash 13322  df-struct 16066  df-ndx 16067  df-slot 16068  df-base 16070  df-sets 16071  df-ress 16072  df-plusg 16162  df-mulr 16163  df-starv 16164  df-tset 16168  df-ple 16169  df-ds 16172  df-unif 16173  df-0g 16310  df-gsum 16311  df-mre 16454  df-mrc 16455  df-acs 16457  df-mgm 17450  df-sgrp 17492  df-mnd 17503  df-submnd 17544  df-grp 17633  df-minusg 17634  df-mulg 17749  df-cntz 17957  df-cmn 18402  df-abl 18403  df-mgp 18698  df-ur 18710  df-ring 18757  df-cring 18758  df-cnfld 19962 This theorem is referenced by:  jensenlem2  24935
 Copyright terms: Public domain W3C validator