![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > jech9.3 | Structured version Visualization version GIF version |
Description: Every set belongs to some value of the cumulative hierarchy of sets function 𝑅1, i.e. the indexed union of all values of 𝑅1 is the universe. Lemma 9.3 of [Jech] p. 71. (Contributed by NM, 4-Oct-2003.) (Revised by Mario Carneiro, 8-Jun-2013.) |
Ref | Expression |
---|---|
jech9.3 | ⊢ ∪ 𝑥 ∈ On (𝑅1‘𝑥) = V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r1fnon 8668 | . . 3 ⊢ 𝑅1 Fn On | |
2 | fniunfv 6545 | . . 3 ⊢ (𝑅1 Fn On → ∪ 𝑥 ∈ On (𝑅1‘𝑥) = ∪ ran 𝑅1) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ ∪ 𝑥 ∈ On (𝑅1‘𝑥) = ∪ ran 𝑅1 |
4 | fndm 6028 | . . . . . 6 ⊢ (𝑅1 Fn On → dom 𝑅1 = On) | |
5 | 1, 4 | ax-mp 5 | . . . . 5 ⊢ dom 𝑅1 = On |
6 | 5 | imaeq2i 5499 | . . . 4 ⊢ (𝑅1 “ dom 𝑅1) = (𝑅1 “ On) |
7 | imadmrn 5511 | . . . 4 ⊢ (𝑅1 “ dom 𝑅1) = ran 𝑅1 | |
8 | 6, 7 | eqtr3i 2675 | . . 3 ⊢ (𝑅1 “ On) = ran 𝑅1 |
9 | 8 | unieqi 4477 | . 2 ⊢ ∪ (𝑅1 “ On) = ∪ ran 𝑅1 |
10 | unir1 8714 | . 2 ⊢ ∪ (𝑅1 “ On) = V | |
11 | 3, 9, 10 | 3eqtr2i 2679 | 1 ⊢ ∪ 𝑥 ∈ On (𝑅1‘𝑥) = V |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1523 Vcvv 3231 ∪ cuni 4468 ∪ ciun 4552 dom cdm 5143 ran crn 5144 “ cima 5146 Oncon0 5761 Fn wfn 5921 ‘cfv 5926 𝑅1cr1 8663 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-reg 8538 ax-inf2 8576 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-reu 2948 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-int 4508 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-om 7108 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-r1 8665 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |