![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > jctr | Structured version Visualization version GIF version |
Description: Inference conjoining a theorem to the right of a consequent. (Contributed by NM, 18-Aug-1993.) (Proof shortened by Wolf Lammen, 24-Oct-2012.) |
Ref | Expression |
---|---|
jctl.1 | ⊢ 𝜓 |
Ref | Expression |
---|---|
jctr | ⊢ (𝜑 → (𝜑 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝜑 → 𝜑) | |
2 | jctl.1 | . 2 ⊢ 𝜓 | |
3 | 1, 2 | jctir 562 | 1 ⊢ (𝜑 → (𝜑 ∧ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 385 |
This theorem is referenced by: mpanl2 719 mpanr2 722 relopabi 5393 brprcneu 6337 mpt2eq12 6872 tfr3 7656 oaabslem 7884 omabslem 7887 isinf 8330 pssnn 8335 preleqALT 8677 ige2m2fzo 12717 uzindi 12967 drsdirfi 17131 ga0 17923 lbsext 19357 lindfrn 20354 toprntopon 20923 fbssint 21835 filssufilg 21908 neiflim 21971 lmmbrf 23252 caucfil 23273 konigsbergssiedgwpr 27393 sspid 27881 onsucsuccmpi 32740 bj-restsn0 33336 bj-restn0 33341 poimirlem28 33742 lhpexle1 35789 diophun 37831 eldioph4b 37869 relexp1idm 38500 relexp0idm 38501 dvsid 39024 dvsef 39025 un10 39509 cnfex 39678 dvmptfprod 40655 |
Copyright terms: Public domain | W3C validator |