![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > jctird | Structured version Visualization version GIF version |
Description: Deduction conjoining a theorem to right of consequent in an implication. (Contributed by NM, 21-Apr-2005.) |
Ref | Expression |
---|---|
jctird.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
jctird.2 | ⊢ (𝜑 → 𝜃) |
Ref | Expression |
---|---|
jctird | ⊢ (𝜑 → (𝜓 → (𝜒 ∧ 𝜃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | jctird.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | jctird.2 | . . 3 ⊢ (𝜑 → 𝜃) | |
3 | 2 | a1d 25 | . 2 ⊢ (𝜑 → (𝜓 → 𝜃)) |
4 | 1, 3 | jcad 556 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 ∧ 𝜃))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 385 |
This theorem is referenced by: anc2ri 582 fnun 6158 fco 6219 mapdom2 8296 fisupg 8373 fiint 8402 dffi3 8502 fiinfg 8570 dfac2b 9143 dfac2OLD 9145 cflm 9264 cfslbn 9281 cardmin 9578 fpwwe2lem12 9655 fpwwe2lem13 9656 elfznelfzob 12768 modsumfzodifsn 12937 dvdsdivcl 15240 isprm5 15621 latjlej1 17266 latmlem1 17282 cnrest2 21292 cnpresti 21294 trufil 21915 stdbdxmet 22521 lgsdir 25256 elwwlks2 27088 orthin 28614 mdbr2 29464 dmdbr2 29471 mdsl2i 29490 atcvat4i 29565 mdsymlem3 29573 wzel 32075 ontgval 32736 poimirlem3 33725 poimirlem4 33726 poimirlem29 33751 poimir 33755 cmtbr4N 35045 cvrat4 35232 cdlemblem 35582 elpglem2 42968 |
Copyright terms: Public domain | W3C validator |