![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > jctild | Structured version Visualization version GIF version |
Description: Deduction conjoining a theorem to left of consequent in an implication. (Contributed by NM, 21-Apr-2005.) |
Ref | Expression |
---|---|
jctild.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
jctild.2 | ⊢ (𝜑 → 𝜃) |
Ref | Expression |
---|---|
jctild | ⊢ (𝜑 → (𝜓 → (𝜃 ∧ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | jctild.2 | . . 3 ⊢ (𝜑 → 𝜃) | |
2 | 1 | a1d 25 | . 2 ⊢ (𝜑 → (𝜓 → 𝜃)) |
3 | jctild.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
4 | 2, 3 | jcad 554 | 1 ⊢ (𝜑 → (𝜓 → (𝜃 ∧ 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 385 |
This theorem is referenced by: syl6an 567 anc2li 579 ordunidif 5811 isofrlem 6630 dfwe2 7023 orduniorsuc 7072 poxp 7334 fnse 7339 ssenen 8175 dffi3 8378 fpwwe2lem13 9502 zmulcl 11464 rpneg 11901 rexuz3 14132 cau3lem 14138 climrlim2 14322 o1rlimmul 14393 iseralt 14459 gcdzeq 15318 isprm3 15443 vdwnnlem2 15747 ablfaclem3 18532 epttop 20861 lmcnp 21156 dfconn2 21270 txcnp 21471 cmphaushmeo 21651 isfild 21709 cnpflf2 21851 flimfnfcls 21879 alexsubALT 21902 fgcfil 23115 bcthlem5 23171 ivthlem2 23267 ivthlem3 23268 dvfsumrlim 23839 plypf1 24013 axeuclidlem 25887 usgr2wlkneq 26708 wwlksnredwwlkn0 26859 wwlksnextwrd 26860 clwlkclwwlklem2a1 26958 extwwlkfab 27342 lnon0 27781 hstles 29218 mdsl1i 29308 atcveq0 29335 atcvat4i 29384 cdjreui 29419 issgon 30314 connpconn 31343 tfisg 31840 frpoinsg 31866 frmin 31867 outsideofrflx 32359 isbasisrelowllem1 33333 isbasisrelowllem2 33334 poimirlem3 33542 poimirlem29 33568 poimir 33572 heicant 33574 equivtotbnd 33707 ismtybndlem 33735 cvrat4 35047 linepsubN 35356 pmapsub 35372 osumcllem4N 35563 pexmidlem1N 35574 dochexmidlem1 37066 clcnvlem 38247 2reu1 41507 iccpartimp 41678 sbgoldbwt 41990 sbgoldbst 41991 elsetrecslem 42770 |
Copyright terms: Public domain | W3C validator |