![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > jcai | Structured version Visualization version GIF version |
Description: Deduction replacing implication with conjunction. (Contributed by NM, 15-Jul-1993.) |
Ref | Expression |
---|---|
jcai.1 | ⊢ (𝜑 → 𝜓) |
jcai.2 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
jcai | ⊢ (𝜑 → (𝜓 ∧ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | jcai.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | jcai.2 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
3 | 1, 2 | mpd 15 | . 2 ⊢ (𝜑 → 𝜒) |
4 | 1, 3 | jca 555 | 1 ⊢ (𝜑 → (𝜓 ∧ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 385 |
This theorem is referenced by: euan 2660 reu6 3528 f1ocnv2d 7043 onfin2 8309 nnoddn2prm 15710 isinitoi 16846 istermoi 16847 iszeroi 16852 mpfrcl 19712 cpmatelimp 20711 cpmatelimp2 20713 clwlksf1clwwlklemOLD 27214 f1o3d 29732 oddpwdc 30717 altopthsn 32366 volsupnfl 33759 mbfresfi 33761 qirropth 37967 brcofffn 38823 lighneal 42030 |
Copyright terms: Public domain | W3C validator |