MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  jcab Structured version   Visualization version   GIF version

Theorem jcab 943
Description: Distributive law for implication over conjunction. Compare Theorem *4.76 of [WhiteheadRussell] p. 121. (Contributed by NM, 3-Apr-1994.) (Proof shortened by Wolf Lammen, 27-Nov-2013.)
Assertion
Ref Expression
jcab ((𝜑 → (𝜓𝜒)) ↔ ((𝜑𝜓) ∧ (𝜑𝜒)))

Proof of Theorem jcab
StepHypRef Expression
1 simpl 474 . . . 4 ((𝜓𝜒) → 𝜓)
21imim2i 16 . . 3 ((𝜑 → (𝜓𝜒)) → (𝜑𝜓))
3 simpr 479 . . . 4 ((𝜓𝜒) → 𝜒)
43imim2i 16 . . 3 ((𝜑 → (𝜓𝜒)) → (𝜑𝜒))
52, 4jca 555 . 2 ((𝜑 → (𝜓𝜒)) → ((𝜑𝜓) ∧ (𝜑𝜒)))
6 pm3.43 942 . 2 (((𝜑𝜓) ∧ (𝜑𝜒)) → (𝜑 → (𝜓𝜒)))
75, 6impbii 199 1 ((𝜑 → (𝜓𝜒)) ↔ ((𝜑𝜓) ∧ (𝜑𝜒)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197  df-an 385
This theorem is referenced by:  ordi  944  pm4.76  946  pm5.44  988  2mo2  2688  ssconb  3886  ssin  3978  tfr3  7665  trclfvcotr  13969  isprm2  15617  lgsquad2lem2  25330  ostthlem2  25537  pclclN  35698  ifpbibib  38375  elmapintrab  38402  elinintrab  38403  2reu4a  41713
  Copyright terms: Public domain W3C validator