![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > jcab | Structured version Visualization version GIF version |
Description: Distributive law for implication over conjunction. Compare Theorem *4.76 of [WhiteheadRussell] p. 121. (Contributed by NM, 3-Apr-1994.) (Proof shortened by Wolf Lammen, 27-Nov-2013.) |
Ref | Expression |
---|---|
jcab | ⊢ ((𝜑 → (𝜓 ∧ 𝜒)) ↔ ((𝜑 → 𝜓) ∧ (𝜑 → 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 474 | . . . 4 ⊢ ((𝜓 ∧ 𝜒) → 𝜓) | |
2 | 1 | imim2i 16 | . . 3 ⊢ ((𝜑 → (𝜓 ∧ 𝜒)) → (𝜑 → 𝜓)) |
3 | simpr 479 | . . . 4 ⊢ ((𝜓 ∧ 𝜒) → 𝜒) | |
4 | 3 | imim2i 16 | . . 3 ⊢ ((𝜑 → (𝜓 ∧ 𝜒)) → (𝜑 → 𝜒)) |
5 | 2, 4 | jca 555 | . 2 ⊢ ((𝜑 → (𝜓 ∧ 𝜒)) → ((𝜑 → 𝜓) ∧ (𝜑 → 𝜒))) |
6 | pm3.43 942 | . 2 ⊢ (((𝜑 → 𝜓) ∧ (𝜑 → 𝜒)) → (𝜑 → (𝜓 ∧ 𝜒))) | |
7 | 5, 6 | impbii 199 | 1 ⊢ ((𝜑 → (𝜓 ∧ 𝜒)) ↔ ((𝜑 → 𝜓) ∧ (𝜑 → 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 385 |
This theorem is referenced by: ordi 944 pm4.76 946 pm5.44 988 2mo2 2688 ssconb 3886 ssin 3978 tfr3 7665 trclfvcotr 13969 isprm2 15617 lgsquad2lem2 25330 ostthlem2 25537 pclclN 35698 ifpbibib 38375 elmapintrab 38402 elinintrab 38403 2reu4a 41713 |
Copyright terms: Public domain | W3C validator |