MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ixxlb Structured version   Visualization version   GIF version

Theorem ixxlb 12411
Description: Extract the lower bound of an interval. (Contributed by Mario Carneiro, 17-Jun-2014.) (Revised by AV, 12-Sep-2020.)
Hypotheses
Ref Expression
ixx.1 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧𝑧𝑆𝑦)})
ixxub.2 ((𝑤 ∈ ℝ*𝐵 ∈ ℝ*) → (𝑤 < 𝐵𝑤𝑆𝐵))
ixxub.3 ((𝑤 ∈ ℝ*𝐵 ∈ ℝ*) → (𝑤𝑆𝐵𝑤𝐵))
ixxub.4 ((𝐴 ∈ ℝ*𝑤 ∈ ℝ*) → (𝐴 < 𝑤𝐴𝑅𝑤))
ixxub.5 ((𝐴 ∈ ℝ*𝑤 ∈ ℝ*) → (𝐴𝑅𝑤𝐴𝑤))
Assertion
Ref Expression
ixxlb ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) → inf((𝐴𝑂𝐵), ℝ*, < ) = 𝐴)
Distinct variable groups:   𝑥,𝑤,𝑦,𝑧,𝐴   𝑤,𝑂   𝑤,𝐵,𝑥,𝑦,𝑧   𝑥,𝑅,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧
Allowed substitution hints:   𝑅(𝑤)   𝑆(𝑤)   𝑂(𝑥,𝑦,𝑧)

Proof of Theorem ixxlb
StepHypRef Expression
1 ixx.1 . . . . . . . . 9 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧𝑧𝑆𝑦)})
21elixx1 12398 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝑤 ∈ (𝐴𝑂𝐵) ↔ (𝑤 ∈ ℝ*𝐴𝑅𝑤𝑤𝑆𝐵)))
323adant3 1127 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) → (𝑤 ∈ (𝐴𝑂𝐵) ↔ (𝑤 ∈ ℝ*𝐴𝑅𝑤𝑤𝑆𝐵)))
43biimpa 502 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ (𝐴𝑂𝐵)) → (𝑤 ∈ ℝ*𝐴𝑅𝑤𝑤𝑆𝐵))
54simp1d 1137 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ (𝐴𝑂𝐵)) → 𝑤 ∈ ℝ*)
65ex 449 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) → (𝑤 ∈ (𝐴𝑂𝐵) → 𝑤 ∈ ℝ*))
76ssrdv 3751 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) → (𝐴𝑂𝐵) ⊆ ℝ*)
8 infxrcl 12377 . . 3 ((𝐴𝑂𝐵) ⊆ ℝ* → inf((𝐴𝑂𝐵), ℝ*, < ) ∈ ℝ*)
97, 8syl 17 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) → inf((𝐴𝑂𝐵), ℝ*, < ) ∈ ℝ*)
10 simp1 1131 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) → 𝐴 ∈ ℝ*)
11 simprr 813 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ ℚ) ∧ (𝐴 < 𝑤𝑤 < inf((𝐴𝑂𝐵), ℝ*, < ))) → 𝑤 < inf((𝐴𝑂𝐵), ℝ*, < ))
127ad2antrr 764 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ ℚ) ∧ (𝐴 < 𝑤𝑤 < inf((𝐴𝑂𝐵), ℝ*, < ))) → (𝐴𝑂𝐵) ⊆ ℝ*)
13 qre 12007 . . . . . . . . . . 11 (𝑤 ∈ ℚ → 𝑤 ∈ ℝ)
1413rexrd 10302 . . . . . . . . . 10 (𝑤 ∈ ℚ → 𝑤 ∈ ℝ*)
1514ad2antlr 765 . . . . . . . . 9 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ ℚ) ∧ (𝐴 < 𝑤𝑤 < inf((𝐴𝑂𝐵), ℝ*, < ))) → 𝑤 ∈ ℝ*)
16 simprl 811 . . . . . . . . . 10 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ ℚ) ∧ (𝐴 < 𝑤𝑤 < inf((𝐴𝑂𝐵), ℝ*, < ))) → 𝐴 < 𝑤)
1710ad2antrr 764 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ ℚ) ∧ (𝐴 < 𝑤𝑤 < inf((𝐴𝑂𝐵), ℝ*, < ))) → 𝐴 ∈ ℝ*)
18 ixxub.4 . . . . . . . . . . 11 ((𝐴 ∈ ℝ*𝑤 ∈ ℝ*) → (𝐴 < 𝑤𝐴𝑅𝑤))
1917, 15, 18syl2anc 696 . . . . . . . . . 10 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ ℚ) ∧ (𝐴 < 𝑤𝑤 < inf((𝐴𝑂𝐵), ℝ*, < ))) → (𝐴 < 𝑤𝐴𝑅𝑤))
2016, 19mpd 15 . . . . . . . . 9 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ ℚ) ∧ (𝐴 < 𝑤𝑤 < inf((𝐴𝑂𝐵), ℝ*, < ))) → 𝐴𝑅𝑤)
219ad2antrr 764 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ ℚ) ∧ (𝐴 < 𝑤𝑤 < inf((𝐴𝑂𝐵), ℝ*, < ))) → inf((𝐴𝑂𝐵), ℝ*, < ) ∈ ℝ*)
22 simpll2 1257 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ ℚ) ∧ (𝐴 < 𝑤𝑤 < inf((𝐴𝑂𝐵), ℝ*, < ))) → 𝐵 ∈ ℝ*)
23 simp3 1133 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) → (𝐴𝑂𝐵) ≠ ∅)
24 n0 4075 . . . . . . . . . . . . . 14 ((𝐴𝑂𝐵) ≠ ∅ ↔ ∃𝑤 𝑤 ∈ (𝐴𝑂𝐵))
2523, 24sylib 208 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) → ∃𝑤 𝑤 ∈ (𝐴𝑂𝐵))
269adantr 472 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ (𝐴𝑂𝐵)) → inf((𝐴𝑂𝐵), ℝ*, < ) ∈ ℝ*)
27 simpl2 1230 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ (𝐴𝑂𝐵)) → 𝐵 ∈ ℝ*)
28 infxrlb 12378 . . . . . . . . . . . . . . 15 (((𝐴𝑂𝐵) ⊆ ℝ*𝑤 ∈ (𝐴𝑂𝐵)) → inf((𝐴𝑂𝐵), ℝ*, < ) ≤ 𝑤)
297, 28sylan 489 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ (𝐴𝑂𝐵)) → inf((𝐴𝑂𝐵), ℝ*, < ) ≤ 𝑤)
304simp3d 1139 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ (𝐴𝑂𝐵)) → 𝑤𝑆𝐵)
31 ixxub.3 . . . . . . . . . . . . . . . 16 ((𝑤 ∈ ℝ*𝐵 ∈ ℝ*) → (𝑤𝑆𝐵𝑤𝐵))
325, 27, 31syl2anc 696 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ (𝐴𝑂𝐵)) → (𝑤𝑆𝐵𝑤𝐵))
3330, 32mpd 15 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ (𝐴𝑂𝐵)) → 𝑤𝐵)
3426, 5, 27, 29, 33xrletrd 12207 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ (𝐴𝑂𝐵)) → inf((𝐴𝑂𝐵), ℝ*, < ) ≤ 𝐵)
3525, 34exlimddv 2013 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) → inf((𝐴𝑂𝐵), ℝ*, < ) ≤ 𝐵)
3635ad2antrr 764 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ ℚ) ∧ (𝐴 < 𝑤𝑤 < inf((𝐴𝑂𝐵), ℝ*, < ))) → inf((𝐴𝑂𝐵), ℝ*, < ) ≤ 𝐵)
3715, 21, 22, 11, 36xrltletrd 12206 . . . . . . . . . 10 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ ℚ) ∧ (𝐴 < 𝑤𝑤 < inf((𝐴𝑂𝐵), ℝ*, < ))) → 𝑤 < 𝐵)
38 ixxub.2 . . . . . . . . . . 11 ((𝑤 ∈ ℝ*𝐵 ∈ ℝ*) → (𝑤 < 𝐵𝑤𝑆𝐵))
3915, 22, 38syl2anc 696 . . . . . . . . . 10 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ ℚ) ∧ (𝐴 < 𝑤𝑤 < inf((𝐴𝑂𝐵), ℝ*, < ))) → (𝑤 < 𝐵𝑤𝑆𝐵))
4037, 39mpd 15 . . . . . . . . 9 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ ℚ) ∧ (𝐴 < 𝑤𝑤 < inf((𝐴𝑂𝐵), ℝ*, < ))) → 𝑤𝑆𝐵)
413ad2antrr 764 . . . . . . . . 9 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ ℚ) ∧ (𝐴 < 𝑤𝑤 < inf((𝐴𝑂𝐵), ℝ*, < ))) → (𝑤 ∈ (𝐴𝑂𝐵) ↔ (𝑤 ∈ ℝ*𝐴𝑅𝑤𝑤𝑆𝐵)))
4215, 20, 40, 41mpbir3and 1428 . . . . . . . 8 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ ℚ) ∧ (𝐴 < 𝑤𝑤 < inf((𝐴𝑂𝐵), ℝ*, < ))) → 𝑤 ∈ (𝐴𝑂𝐵))
4312, 42, 28syl2anc 696 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ ℚ) ∧ (𝐴 < 𝑤𝑤 < inf((𝐴𝑂𝐵), ℝ*, < ))) → inf((𝐴𝑂𝐵), ℝ*, < ) ≤ 𝑤)
4421, 15xrlenltd 10317 . . . . . . 7 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ ℚ) ∧ (𝐴 < 𝑤𝑤 < inf((𝐴𝑂𝐵), ℝ*, < ))) → (inf((𝐴𝑂𝐵), ℝ*, < ) ≤ 𝑤 ↔ ¬ 𝑤 < inf((𝐴𝑂𝐵), ℝ*, < )))
4543, 44mpbid 222 . . . . . 6 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ ℚ) ∧ (𝐴 < 𝑤𝑤 < inf((𝐴𝑂𝐵), ℝ*, < ))) → ¬ 𝑤 < inf((𝐴𝑂𝐵), ℝ*, < ))
4611, 45pm2.65da 601 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ ℚ) → ¬ (𝐴 < 𝑤𝑤 < inf((𝐴𝑂𝐵), ℝ*, < )))
4746nrexdv 3140 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) → ¬ ∃𝑤 ∈ ℚ (𝐴 < 𝑤𝑤 < inf((𝐴𝑂𝐵), ℝ*, < )))
48 qbtwnxr 12245 . . . . . 6 ((𝐴 ∈ ℝ* ∧ inf((𝐴𝑂𝐵), ℝ*, < ) ∈ ℝ*𝐴 < inf((𝐴𝑂𝐵), ℝ*, < )) → ∃𝑤 ∈ ℚ (𝐴 < 𝑤𝑤 < inf((𝐴𝑂𝐵), ℝ*, < )))
49483expia 1115 . . . . 5 ((𝐴 ∈ ℝ* ∧ inf((𝐴𝑂𝐵), ℝ*, < ) ∈ ℝ*) → (𝐴 < inf((𝐴𝑂𝐵), ℝ*, < ) → ∃𝑤 ∈ ℚ (𝐴 < 𝑤𝑤 < inf((𝐴𝑂𝐵), ℝ*, < ))))
5010, 9, 49syl2anc 696 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) → (𝐴 < inf((𝐴𝑂𝐵), ℝ*, < ) → ∃𝑤 ∈ ℚ (𝐴 < 𝑤𝑤 < inf((𝐴𝑂𝐵), ℝ*, < ))))
5147, 50mtod 189 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) → ¬ 𝐴 < inf((𝐴𝑂𝐵), ℝ*, < ))
529, 10, 51xrnltled 10319 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) → inf((𝐴𝑂𝐵), ℝ*, < ) ≤ 𝐴)
534simp2d 1138 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ (𝐴𝑂𝐵)) → 𝐴𝑅𝑤)
5410adantr 472 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ (𝐴𝑂𝐵)) → 𝐴 ∈ ℝ*)
55 ixxub.5 . . . . . 6 ((𝐴 ∈ ℝ*𝑤 ∈ ℝ*) → (𝐴𝑅𝑤𝐴𝑤))
5654, 5, 55syl2anc 696 . . . . 5 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ (𝐴𝑂𝐵)) → (𝐴𝑅𝑤𝐴𝑤))
5753, 56mpd 15 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) ∧ 𝑤 ∈ (𝐴𝑂𝐵)) → 𝐴𝑤)
5857ralrimiva 3105 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) → ∀𝑤 ∈ (𝐴𝑂𝐵)𝐴𝑤)
59 infxrgelb 12379 . . . 4 (((𝐴𝑂𝐵) ⊆ ℝ*𝐴 ∈ ℝ*) → (𝐴 ≤ inf((𝐴𝑂𝐵), ℝ*, < ) ↔ ∀𝑤 ∈ (𝐴𝑂𝐵)𝐴𝑤))
607, 10, 59syl2anc 696 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) → (𝐴 ≤ inf((𝐴𝑂𝐵), ℝ*, < ) ↔ ∀𝑤 ∈ (𝐴𝑂𝐵)𝐴𝑤))
6158, 60mpbird 247 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) → 𝐴 ≤ inf((𝐴𝑂𝐵), ℝ*, < ))
629, 10, 52, 61xrletrid 12200 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐴𝑂𝐵) ≠ ∅) → inf((𝐴𝑂𝐵), ℝ*, < ) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383  w3a 1072   = wceq 1632  wex 1853  wcel 2140  wne 2933  wral 3051  wrex 3052  {crab 3055  wss 3716  c0 4059   class class class wbr 4805  (class class class)co 6815  cmpt2 6817  infcinf 8515  *cxr 10286   < clt 10287  cle 10288  cq 12002
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1989  ax-6 2055  ax-7 2091  ax-8 2142  ax-9 2149  ax-10 2169  ax-11 2184  ax-12 2197  ax-13 2392  ax-ext 2741  ax-sep 4934  ax-nul 4942  ax-pow 4993  ax-pr 5056  ax-un 7116  ax-cnex 10205  ax-resscn 10206  ax-1cn 10207  ax-icn 10208  ax-addcl 10209  ax-addrcl 10210  ax-mulcl 10211  ax-mulrcl 10212  ax-mulcom 10213  ax-addass 10214  ax-mulass 10215  ax-distr 10216  ax-i2m1 10217  ax-1ne0 10218  ax-1rid 10219  ax-rnegex 10220  ax-rrecex 10221  ax-cnre 10222  ax-pre-lttri 10223  ax-pre-lttrn 10224  ax-pre-ltadd 10225  ax-pre-mulgt0 10226  ax-pre-sup 10227
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2048  df-eu 2612  df-mo 2613  df-clab 2748  df-cleq 2754  df-clel 2757  df-nfc 2892  df-ne 2934  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3343  df-sbc 3578  df-csb 3676  df-dif 3719  df-un 3721  df-in 3723  df-ss 3730  df-pss 3732  df-nul 4060  df-if 4232  df-pw 4305  df-sn 4323  df-pr 4325  df-tp 4327  df-op 4329  df-uni 4590  df-iun 4675  df-br 4806  df-opab 4866  df-mpt 4883  df-tr 4906  df-id 5175  df-eprel 5180  df-po 5188  df-so 5189  df-fr 5226  df-we 5228  df-xp 5273  df-rel 5274  df-cnv 5275  df-co 5276  df-dm 5277  df-rn 5278  df-res 5279  df-ima 5280  df-pred 5842  df-ord 5888  df-on 5889  df-lim 5890  df-suc 5891  df-iota 6013  df-fun 6052  df-fn 6053  df-f 6054  df-f1 6055  df-fo 6056  df-f1o 6057  df-fv 6058  df-riota 6776  df-ov 6818  df-oprab 6819  df-mpt2 6820  df-om 7233  df-1st 7335  df-2nd 7336  df-wrecs 7578  df-recs 7639  df-rdg 7677  df-er 7914  df-en 8125  df-dom 8126  df-sdom 8127  df-sup 8516  df-inf 8517  df-pnf 10289  df-mnf 10290  df-xr 10291  df-ltxr 10292  df-le 10293  df-sub 10481  df-neg 10482  df-div 10898  df-nn 11234  df-n0 11506  df-z 11591  df-uz 11901  df-q 12003
This theorem is referenced by:  ioorf  23562  ioorinv2  23564  ioossioobi  40265
  Copyright terms: Public domain W3C validator