MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ixpssmapg Structured version   Visualization version   GIF version

Theorem ixpssmapg 8102
Description: An infinite Cartesian product is a subset of set exponentiation. (Contributed by Jeff Madsen, 19-Jun-2011.)
Assertion
Ref Expression
ixpssmapg (∀𝑥𝐴 𝐵𝑉X𝑥𝐴 𝐵 ⊆ ( 𝑥𝐴 𝐵𝑚 𝐴))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐵(𝑥)   𝑉(𝑥)

Proof of Theorem ixpssmapg
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 n0i 4061 . . . . . . 7 (𝑓X𝑥𝐴 𝐵 → ¬ X𝑥𝐴 𝐵 = ∅)
2 ixpprc 8093 . . . . . . 7 𝐴 ∈ V → X𝑥𝐴 𝐵 = ∅)
31, 2nsyl2 142 . . . . . 6 (𝑓X𝑥𝐴 𝐵𝐴 ∈ V)
4 id 22 . . . . . 6 (∀𝑥𝐴 𝐵𝑉 → ∀𝑥𝐴 𝐵𝑉)
5 iunexg 7306 . . . . . 6 ((𝐴 ∈ V ∧ ∀𝑥𝐴 𝐵𝑉) → 𝑥𝐴 𝐵 ∈ V)
63, 4, 5syl2anr 496 . . . . 5 ((∀𝑥𝐴 𝐵𝑉𝑓X𝑥𝐴 𝐵) → 𝑥𝐴 𝐵 ∈ V)
7 ixpssmap2g 8101 . . . . 5 ( 𝑥𝐴 𝐵 ∈ V → X𝑥𝐴 𝐵 ⊆ ( 𝑥𝐴 𝐵𝑚 𝐴))
86, 7syl 17 . . . 4 ((∀𝑥𝐴 𝐵𝑉𝑓X𝑥𝐴 𝐵) → X𝑥𝐴 𝐵 ⊆ ( 𝑥𝐴 𝐵𝑚 𝐴))
9 simpr 479 . . . 4 ((∀𝑥𝐴 𝐵𝑉𝑓X𝑥𝐴 𝐵) → 𝑓X𝑥𝐴 𝐵)
108, 9sseldd 3743 . . 3 ((∀𝑥𝐴 𝐵𝑉𝑓X𝑥𝐴 𝐵) → 𝑓 ∈ ( 𝑥𝐴 𝐵𝑚 𝐴))
1110ex 449 . 2 (∀𝑥𝐴 𝐵𝑉 → (𝑓X𝑥𝐴 𝐵𝑓 ∈ ( 𝑥𝐴 𝐵𝑚 𝐴)))
1211ssrdv 3748 1 (∀𝑥𝐴 𝐵𝑉X𝑥𝐴 𝐵 ⊆ ( 𝑥𝐴 𝐵𝑚 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1630  wcel 2137  wral 3048  Vcvv 3338  wss 3713  c0 4056   ciun 4670  (class class class)co 6811  𝑚 cmap 8021  Xcixp 8072
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1986  ax-6 2052  ax-7 2088  ax-8 2139  ax-9 2146  ax-10 2166  ax-11 2181  ax-12 2194  ax-13 2389  ax-ext 2738  ax-rep 4921  ax-sep 4931  ax-nul 4939  ax-pow 4990  ax-pr 5053  ax-un 7112
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2045  df-eu 2609  df-mo 2610  df-clab 2745  df-cleq 2751  df-clel 2754  df-nfc 2889  df-ne 2931  df-ral 3053  df-rex 3054  df-reu 3055  df-rab 3057  df-v 3340  df-sbc 3575  df-csb 3673  df-dif 3716  df-un 3718  df-in 3720  df-ss 3727  df-nul 4057  df-if 4229  df-pw 4302  df-sn 4320  df-pr 4322  df-op 4326  df-uni 4587  df-iun 4672  df-br 4803  df-opab 4863  df-mpt 4880  df-id 5172  df-xp 5270  df-rel 5271  df-cnv 5272  df-co 5273  df-dm 5274  df-rn 5275  df-res 5276  df-ima 5277  df-iota 6010  df-fun 6049  df-fn 6050  df-f 6051  df-f1 6052  df-fo 6053  df-f1o 6054  df-fv 6055  df-ov 6814  df-oprab 6815  df-mpt2 6816  df-map 8023  df-ixp 8073
This theorem is referenced by:  ixpssmap  8106  gruixp  9821  hoissrrn  41267  hoissrrn2  41296
  Copyright terms: Public domain W3C validator