![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ixpexg | Structured version Visualization version GIF version |
Description: The existence of an infinite Cartesian product. 𝑥 is normally a free-variable parameter in 𝐵. Remark in Enderton p. 54. (Contributed by NM, 28-Sep-2006.) (Revised by Mario Carneiro, 25-Jan-2015.) |
Ref | Expression |
---|---|
ixpexg | ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → X𝑥 ∈ 𝐴 𝐵 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uniixp 7973 | . . . 4 ⊢ ∪ X𝑥 ∈ 𝐴 𝐵 ⊆ (𝐴 × ∪ 𝑥 ∈ 𝐴 𝐵) | |
2 | iunexg 7185 | . . . . 5 ⊢ ((𝐴 ∈ V ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉) → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ V) | |
3 | xpexg 7002 | . . . . 5 ⊢ ((𝐴 ∈ V ∧ ∪ 𝑥 ∈ 𝐴 𝐵 ∈ V) → (𝐴 × ∪ 𝑥 ∈ 𝐴 𝐵) ∈ V) | |
4 | 2, 3 | syldan 486 | . . . 4 ⊢ ((𝐴 ∈ V ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉) → (𝐴 × ∪ 𝑥 ∈ 𝐴 𝐵) ∈ V) |
5 | ssexg 4837 | . . . 4 ⊢ ((∪ X𝑥 ∈ 𝐴 𝐵 ⊆ (𝐴 × ∪ 𝑥 ∈ 𝐴 𝐵) ∧ (𝐴 × ∪ 𝑥 ∈ 𝐴 𝐵) ∈ V) → ∪ X𝑥 ∈ 𝐴 𝐵 ∈ V) | |
6 | 1, 4, 5 | sylancr 696 | . . 3 ⊢ ((𝐴 ∈ V ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉) → ∪ X𝑥 ∈ 𝐴 𝐵 ∈ V) |
7 | uniexb 7015 | . . 3 ⊢ (X𝑥 ∈ 𝐴 𝐵 ∈ V ↔ ∪ X𝑥 ∈ 𝐴 𝐵 ∈ V) | |
8 | 6, 7 | sylibr 224 | . 2 ⊢ ((𝐴 ∈ V ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉) → X𝑥 ∈ 𝐴 𝐵 ∈ V) |
9 | ixpprc 7971 | . . . 4 ⊢ (¬ 𝐴 ∈ V → X𝑥 ∈ 𝐴 𝐵 = ∅) | |
10 | 0ex 4823 | . . . 4 ⊢ ∅ ∈ V | |
11 | 9, 10 | syl6eqel 2738 | . . 3 ⊢ (¬ 𝐴 ∈ V → X𝑥 ∈ 𝐴 𝐵 ∈ V) |
12 | 11 | adantr 480 | . 2 ⊢ ((¬ 𝐴 ∈ V ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉) → X𝑥 ∈ 𝐴 𝐵 ∈ V) |
13 | 8, 12 | pm2.61ian 848 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → X𝑥 ∈ 𝐴 𝐵 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 383 ∈ wcel 2030 ∀wral 2941 Vcvv 3231 ⊆ wss 3607 ∅c0 3948 ∪ cuni 4468 ∪ ciun 4552 × cxp 5141 Xcixp 7950 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-reu 2948 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-ixp 7951 |
This theorem is referenced by: konigthlem 9428 prdsbasex 16158 isfunc 16571 isnat 16654 natffn 16656 dmdprd 18443 dprdval 18448 elpt 21423 ptbasin2 21429 ptbasfi 21432 ptrest 33538 upixp 33654 hspval 41144 hspmbl 41164 vonioolem2 41216 vonicclem2 41219 |
Copyright terms: Public domain | W3C validator |