MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ivthicc Structured version   Visualization version   GIF version

Theorem ivthicc 23445
Description: The interval between any two points of a continuous real function is contained in the range of the function. Equivalently, the range of a continuous real function is convex. (Contributed by Mario Carneiro, 12-Aug-2014.)
Hypotheses
Ref Expression
ivthicc.1 (𝜑𝐴 ∈ ℝ)
ivthicc.2 (𝜑𝐵 ∈ ℝ)
ivthicc.3 (𝜑𝑀 ∈ (𝐴[,]𝐵))
ivthicc.4 (𝜑𝑁 ∈ (𝐴[,]𝐵))
ivthicc.5 (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷)
ivthicc.7 (𝜑𝐹 ∈ (𝐷cn→ℂ))
ivthicc.8 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) ∈ ℝ)
Assertion
Ref Expression
ivthicc (𝜑 → ((𝐹𝑀)[,](𝐹𝑁)) ⊆ ran 𝐹)
Distinct variable groups:   𝑥,𝐷   𝑥,𝐹   𝑥,𝑀   𝑥,𝑁   𝜑,𝑥   𝑥,𝐴   𝑥,𝐵

Proof of Theorem ivthicc
Dummy variables 𝑧 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll 742 . . . . 5 (((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) ∧ 𝑀 < 𝑁) → 𝜑)
2 ivthicc.3 . . . . . . . . 9 (𝜑𝑀 ∈ (𝐴[,]𝐵))
3 ivthicc.1 . . . . . . . . . 10 (𝜑𝐴 ∈ ℝ)
4 ivthicc.2 . . . . . . . . . 10 (𝜑𝐵 ∈ ℝ)
5 elicc2 12442 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑀 ∈ (𝐴[,]𝐵) ↔ (𝑀 ∈ ℝ ∧ 𝐴𝑀𝑀𝐵)))
63, 4, 5syl2anc 565 . . . . . . . . 9 (𝜑 → (𝑀 ∈ (𝐴[,]𝐵) ↔ (𝑀 ∈ ℝ ∧ 𝐴𝑀𝑀𝐵)))
72, 6mpbid 222 . . . . . . . 8 (𝜑 → (𝑀 ∈ ℝ ∧ 𝐴𝑀𝑀𝐵))
87simp1d 1135 . . . . . . 7 (𝜑𝑀 ∈ ℝ)
98ad2antrr 697 . . . . . 6 (((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) ∧ 𝑀 < 𝑁) → 𝑀 ∈ ℝ)
10 ivthicc.4 . . . . . . . . 9 (𝜑𝑁 ∈ (𝐴[,]𝐵))
11 elicc2 12442 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑁 ∈ (𝐴[,]𝐵) ↔ (𝑁 ∈ ℝ ∧ 𝐴𝑁𝑁𝐵)))
123, 4, 11syl2anc 565 . . . . . . . . 9 (𝜑 → (𝑁 ∈ (𝐴[,]𝐵) ↔ (𝑁 ∈ ℝ ∧ 𝐴𝑁𝑁𝐵)))
1310, 12mpbid 222 . . . . . . . 8 (𝜑 → (𝑁 ∈ ℝ ∧ 𝐴𝑁𝑁𝐵))
1413simp1d 1135 . . . . . . 7 (𝜑𝑁 ∈ ℝ)
1514ad2antrr 697 . . . . . 6 (((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) ∧ 𝑀 < 𝑁) → 𝑁 ∈ ℝ)
16 fveq2 6332 . . . . . . . . . . 11 (𝑥 = 𝑀 → (𝐹𝑥) = (𝐹𝑀))
1716eleq1d 2834 . . . . . . . . . 10 (𝑥 = 𝑀 → ((𝐹𝑥) ∈ ℝ ↔ (𝐹𝑀) ∈ ℝ))
18 ivthicc.8 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) ∈ ℝ)
1918ralrimiva 3114 . . . . . . . . . 10 (𝜑 → ∀𝑥 ∈ (𝐴[,]𝐵)(𝐹𝑥) ∈ ℝ)
2017, 19, 2rspcdva 3464 . . . . . . . . 9 (𝜑 → (𝐹𝑀) ∈ ℝ)
21 fveq2 6332 . . . . . . . . . . 11 (𝑥 = 𝑁 → (𝐹𝑥) = (𝐹𝑁))
2221eleq1d 2834 . . . . . . . . . 10 (𝑥 = 𝑁 → ((𝐹𝑥) ∈ ℝ ↔ (𝐹𝑁) ∈ ℝ))
2322, 19, 10rspcdva 3464 . . . . . . . . 9 (𝜑 → (𝐹𝑁) ∈ ℝ)
24 iccssre 12459 . . . . . . . . 9 (((𝐹𝑀) ∈ ℝ ∧ (𝐹𝑁) ∈ ℝ) → ((𝐹𝑀)[,](𝐹𝑁)) ⊆ ℝ)
2520, 23, 24syl2anc 565 . . . . . . . 8 (𝜑 → ((𝐹𝑀)[,](𝐹𝑁)) ⊆ ℝ)
2625sselda 3750 . . . . . . 7 ((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) → 𝑦 ∈ ℝ)
2726adantr 466 . . . . . 6 (((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) ∧ 𝑀 < 𝑁) → 𝑦 ∈ ℝ)
28 simpr 471 . . . . . 6 (((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) ∧ 𝑀 < 𝑁) → 𝑀 < 𝑁)
297simp2d 1136 . . . . . . . . 9 (𝜑𝐴𝑀)
3013simp3d 1137 . . . . . . . . 9 (𝜑𝑁𝐵)
31 iccss 12445 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴𝑀𝑁𝐵)) → (𝑀[,]𝑁) ⊆ (𝐴[,]𝐵))
323, 4, 29, 30, 31syl22anc 1476 . . . . . . . 8 (𝜑 → (𝑀[,]𝑁) ⊆ (𝐴[,]𝐵))
33 ivthicc.5 . . . . . . . 8 (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷)
3432, 33sstrd 3760 . . . . . . 7 (𝜑 → (𝑀[,]𝑁) ⊆ 𝐷)
3534ad2antrr 697 . . . . . 6 (((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) ∧ 𝑀 < 𝑁) → (𝑀[,]𝑁) ⊆ 𝐷)
36 ivthicc.7 . . . . . . 7 (𝜑𝐹 ∈ (𝐷cn→ℂ))
3736ad2antrr 697 . . . . . 6 (((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) ∧ 𝑀 < 𝑁) → 𝐹 ∈ (𝐷cn→ℂ))
3832sselda 3750 . . . . . . . 8 ((𝜑𝑥 ∈ (𝑀[,]𝑁)) → 𝑥 ∈ (𝐴[,]𝐵))
3938, 18syldan 571 . . . . . . 7 ((𝜑𝑥 ∈ (𝑀[,]𝑁)) → (𝐹𝑥) ∈ ℝ)
401, 39sylan 561 . . . . . 6 ((((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) ∧ 𝑀 < 𝑁) ∧ 𝑥 ∈ (𝑀[,]𝑁)) → (𝐹𝑥) ∈ ℝ)
41 elicc2 12442 . . . . . . . . . 10 (((𝐹𝑀) ∈ ℝ ∧ (𝐹𝑁) ∈ ℝ) → (𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁)) ↔ (𝑦 ∈ ℝ ∧ (𝐹𝑀) ≤ 𝑦𝑦 ≤ (𝐹𝑁))))
4220, 23, 41syl2anc 565 . . . . . . . . 9 (𝜑 → (𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁)) ↔ (𝑦 ∈ ℝ ∧ (𝐹𝑀) ≤ 𝑦𝑦 ≤ (𝐹𝑁))))
4342biimpa 462 . . . . . . . 8 ((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) → (𝑦 ∈ ℝ ∧ (𝐹𝑀) ≤ 𝑦𝑦 ≤ (𝐹𝑁)))
44 3simpc 1145 . . . . . . . 8 ((𝑦 ∈ ℝ ∧ (𝐹𝑀) ≤ 𝑦𝑦 ≤ (𝐹𝑁)) → ((𝐹𝑀) ≤ 𝑦𝑦 ≤ (𝐹𝑁)))
4543, 44syl 17 . . . . . . 7 ((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) → ((𝐹𝑀) ≤ 𝑦𝑦 ≤ (𝐹𝑁)))
4645adantr 466 . . . . . 6 (((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) ∧ 𝑀 < 𝑁) → ((𝐹𝑀) ≤ 𝑦𝑦 ≤ (𝐹𝑁)))
479, 15, 27, 28, 35, 37, 40, 46ivthle 23443 . . . . 5 (((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) ∧ 𝑀 < 𝑁) → ∃𝑧 ∈ (𝑀[,]𝑁)(𝐹𝑧) = 𝑦)
4834sselda 3750 . . . . . . 7 ((𝜑𝑧 ∈ (𝑀[,]𝑁)) → 𝑧𝐷)
49 cncff 22915 . . . . . . . . . 10 (𝐹 ∈ (𝐷cn→ℂ) → 𝐹:𝐷⟶ℂ)
50 ffn 6185 . . . . . . . . . 10 (𝐹:𝐷⟶ℂ → 𝐹 Fn 𝐷)
5136, 49, 503syl 18 . . . . . . . . 9 (𝜑𝐹 Fn 𝐷)
52 fnfvelrn 6499 . . . . . . . . 9 ((𝐹 Fn 𝐷𝑧𝐷) → (𝐹𝑧) ∈ ran 𝐹)
5351, 52sylan 561 . . . . . . . 8 ((𝜑𝑧𝐷) → (𝐹𝑧) ∈ ran 𝐹)
54 eleq1 2837 . . . . . . . 8 ((𝐹𝑧) = 𝑦 → ((𝐹𝑧) ∈ ran 𝐹𝑦 ∈ ran 𝐹))
5553, 54syl5ibcom 235 . . . . . . 7 ((𝜑𝑧𝐷) → ((𝐹𝑧) = 𝑦𝑦 ∈ ran 𝐹))
5648, 55syldan 571 . . . . . 6 ((𝜑𝑧 ∈ (𝑀[,]𝑁)) → ((𝐹𝑧) = 𝑦𝑦 ∈ ran 𝐹))
5756rexlimdva 3178 . . . . 5 (𝜑 → (∃𝑧 ∈ (𝑀[,]𝑁)(𝐹𝑧) = 𝑦𝑦 ∈ ran 𝐹))
581, 47, 57sylc 65 . . . 4 (((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) ∧ 𝑀 < 𝑁) → 𝑦 ∈ ran 𝐹)
59 simplr 744 . . . . . . 7 (((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) ∧ 𝑀 = 𝑁) → 𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁)))
60 simpr 471 . . . . . . . . . 10 (((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) ∧ 𝑀 = 𝑁) → 𝑀 = 𝑁)
6160fveq2d 6336 . . . . . . . . 9 (((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) ∧ 𝑀 = 𝑁) → (𝐹𝑀) = (𝐹𝑁))
6261oveq2d 6808 . . . . . . . 8 (((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) ∧ 𝑀 = 𝑁) → ((𝐹𝑀)[,](𝐹𝑀)) = ((𝐹𝑀)[,](𝐹𝑁)))
6320rexrd 10290 . . . . . . . . . 10 (𝜑 → (𝐹𝑀) ∈ ℝ*)
6463ad2antrr 697 . . . . . . . . 9 (((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) ∧ 𝑀 = 𝑁) → (𝐹𝑀) ∈ ℝ*)
65 iccid 12424 . . . . . . . . 9 ((𝐹𝑀) ∈ ℝ* → ((𝐹𝑀)[,](𝐹𝑀)) = {(𝐹𝑀)})
6664, 65syl 17 . . . . . . . 8 (((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) ∧ 𝑀 = 𝑁) → ((𝐹𝑀)[,](𝐹𝑀)) = {(𝐹𝑀)})
6762, 66eqtr3d 2806 . . . . . . 7 (((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) ∧ 𝑀 = 𝑁) → ((𝐹𝑀)[,](𝐹𝑁)) = {(𝐹𝑀)})
6859, 67eleqtrd 2851 . . . . . 6 (((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) ∧ 𝑀 = 𝑁) → 𝑦 ∈ {(𝐹𝑀)})
69 elsni 4331 . . . . . 6 (𝑦 ∈ {(𝐹𝑀)} → 𝑦 = (𝐹𝑀))
7068, 69syl 17 . . . . 5 (((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) ∧ 𝑀 = 𝑁) → 𝑦 = (𝐹𝑀))
7133, 2sseldd 3751 . . . . . . 7 (𝜑𝑀𝐷)
72 fnfvelrn 6499 . . . . . . 7 ((𝐹 Fn 𝐷𝑀𝐷) → (𝐹𝑀) ∈ ran 𝐹)
7351, 71, 72syl2anc 565 . . . . . 6 (𝜑 → (𝐹𝑀) ∈ ran 𝐹)
7473ad2antrr 697 . . . . 5 (((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) ∧ 𝑀 = 𝑁) → (𝐹𝑀) ∈ ran 𝐹)
7570, 74eqeltrd 2849 . . . 4 (((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) ∧ 𝑀 = 𝑁) → 𝑦 ∈ ran 𝐹)
76 simpll 742 . . . . 5 (((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) ∧ 𝑁 < 𝑀) → 𝜑)
7714ad2antrr 697 . . . . . 6 (((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) ∧ 𝑁 < 𝑀) → 𝑁 ∈ ℝ)
788ad2antrr 697 . . . . . 6 (((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) ∧ 𝑁 < 𝑀) → 𝑀 ∈ ℝ)
7926adantr 466 . . . . . 6 (((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) ∧ 𝑁 < 𝑀) → 𝑦 ∈ ℝ)
80 simpr 471 . . . . . 6 (((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) ∧ 𝑁 < 𝑀) → 𝑁 < 𝑀)
8113simp2d 1136 . . . . . . . . 9 (𝜑𝐴𝑁)
827simp3d 1137 . . . . . . . . 9 (𝜑𝑀𝐵)
83 iccss 12445 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴𝑁𝑀𝐵)) → (𝑁[,]𝑀) ⊆ (𝐴[,]𝐵))
843, 4, 81, 82, 83syl22anc 1476 . . . . . . . 8 (𝜑 → (𝑁[,]𝑀) ⊆ (𝐴[,]𝐵))
8584, 33sstrd 3760 . . . . . . 7 (𝜑 → (𝑁[,]𝑀) ⊆ 𝐷)
8685ad2antrr 697 . . . . . 6 (((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) ∧ 𝑁 < 𝑀) → (𝑁[,]𝑀) ⊆ 𝐷)
8736ad2antrr 697 . . . . . 6 (((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) ∧ 𝑁 < 𝑀) → 𝐹 ∈ (𝐷cn→ℂ))
8884sselda 3750 . . . . . . . 8 ((𝜑𝑥 ∈ (𝑁[,]𝑀)) → 𝑥 ∈ (𝐴[,]𝐵))
8988, 18syldan 571 . . . . . . 7 ((𝜑𝑥 ∈ (𝑁[,]𝑀)) → (𝐹𝑥) ∈ ℝ)
9076, 89sylan 561 . . . . . 6 ((((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) ∧ 𝑁 < 𝑀) ∧ 𝑥 ∈ (𝑁[,]𝑀)) → (𝐹𝑥) ∈ ℝ)
9145adantr 466 . . . . . 6 (((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) ∧ 𝑁 < 𝑀) → ((𝐹𝑀) ≤ 𝑦𝑦 ≤ (𝐹𝑁)))
9277, 78, 79, 80, 86, 87, 90, 91ivthle2 23444 . . . . 5 (((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) ∧ 𝑁 < 𝑀) → ∃𝑧 ∈ (𝑁[,]𝑀)(𝐹𝑧) = 𝑦)
9385sselda 3750 . . . . . . 7 ((𝜑𝑧 ∈ (𝑁[,]𝑀)) → 𝑧𝐷)
9493, 55syldan 571 . . . . . 6 ((𝜑𝑧 ∈ (𝑁[,]𝑀)) → ((𝐹𝑧) = 𝑦𝑦 ∈ ran 𝐹))
9594rexlimdva 3178 . . . . 5 (𝜑 → (∃𝑧 ∈ (𝑁[,]𝑀)(𝐹𝑧) = 𝑦𝑦 ∈ ran 𝐹))
9676, 92, 95sylc 65 . . . 4 (((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) ∧ 𝑁 < 𝑀) → 𝑦 ∈ ran 𝐹)
978, 14lttri4d 10379 . . . . 5 (𝜑 → (𝑀 < 𝑁𝑀 = 𝑁𝑁 < 𝑀))
9897adantr 466 . . . 4 ((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) → (𝑀 < 𝑁𝑀 = 𝑁𝑁 < 𝑀))
9958, 75, 96, 98mpjao3dan 1542 . . 3 ((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) → 𝑦 ∈ ran 𝐹)
10099ex 397 . 2 (𝜑 → (𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁)) → 𝑦 ∈ ran 𝐹))
101100ssrdv 3756 1 (𝜑 → ((𝐹𝑀)[,](𝐹𝑁)) ⊆ ran 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382  w3o 1069  w3a 1070   = wceq 1630  wcel 2144  wrex 3061  wss 3721  {csn 4314   class class class wbr 4784  ran crn 5250   Fn wfn 6026  wf 6027  cfv 6031  (class class class)co 6792  cc 10135  cr 10136  *cxr 10274   < clt 10275  cle 10276  [,]cicc 12382  cnccncf 22898
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-rep 4902  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095  ax-inf2 8701  ax-cnex 10193  ax-resscn 10194  ax-1cn 10195  ax-icn 10196  ax-addcl 10197  ax-addrcl 10198  ax-mulcl 10199  ax-mulrcl 10200  ax-mulcom 10201  ax-addass 10202  ax-mulass 10203  ax-distr 10204  ax-i2m1 10205  ax-1ne0 10206  ax-1rid 10207  ax-rnegex 10208  ax-rrecex 10209  ax-cnre 10210  ax-pre-lttri 10211  ax-pre-lttrn 10212  ax-pre-ltadd 10213  ax-pre-mulgt0 10214  ax-pre-sup 10215  ax-mulf 10217
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-nel 3046  df-ral 3065  df-rex 3066  df-reu 3067  df-rmo 3068  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-pss 3737  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-tp 4319  df-op 4321  df-uni 4573  df-int 4610  df-iun 4654  df-iin 4655  df-br 4785  df-opab 4845  df-mpt 4862  df-tr 4885  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-se 5209  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-isom 6040  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-of 7043  df-om 7212  df-1st 7314  df-2nd 7315  df-supp 7446  df-wrecs 7558  df-recs 7620  df-rdg 7658  df-1o 7712  df-2o 7713  df-oadd 7716  df-er 7895  df-map 8010  df-ixp 8062  df-en 8109  df-dom 8110  df-sdom 8111  df-fin 8112  df-fsupp 8431  df-fi 8472  df-sup 8503  df-inf 8504  df-oi 8570  df-card 8964  df-cda 9191  df-pnf 10277  df-mnf 10278  df-xr 10279  df-ltxr 10280  df-le 10281  df-sub 10469  df-neg 10470  df-div 10886  df-nn 11222  df-2 11280  df-3 11281  df-4 11282  df-5 11283  df-6 11284  df-7 11285  df-8 11286  df-9 11287  df-n0 11494  df-z 11579  df-dec 11695  df-uz 11888  df-q 11991  df-rp 12035  df-xneg 12150  df-xadd 12151  df-xmul 12152  df-ioo 12383  df-icc 12386  df-fz 12533  df-fzo 12673  df-seq 13008  df-exp 13067  df-hash 13321  df-cj 14046  df-re 14047  df-im 14048  df-sqrt 14182  df-abs 14183  df-struct 16065  df-ndx 16066  df-slot 16067  df-base 16069  df-sets 16070  df-ress 16071  df-plusg 16161  df-mulr 16162  df-starv 16163  df-sca 16164  df-vsca 16165  df-ip 16166  df-tset 16167  df-ple 16168  df-ds 16171  df-unif 16172  df-hom 16173  df-cco 16174  df-rest 16290  df-topn 16291  df-0g 16309  df-gsum 16310  df-topgen 16311  df-pt 16312  df-prds 16315  df-xrs 16369  df-qtop 16374  df-imas 16375  df-xps 16377  df-mre 16453  df-mrc 16454  df-acs 16456  df-mgm 17449  df-sgrp 17491  df-mnd 17502  df-submnd 17543  df-mulg 17748  df-cntz 17956  df-cmn 18401  df-psmet 19952  df-xmet 19953  df-met 19954  df-bl 19955  df-mopn 19956  df-cnfld 19961  df-top 20918  df-topon 20935  df-topsp 20957  df-bases 20970  df-cn 21251  df-cnp 21252  df-tx 21585  df-hmeo 21778  df-xms 22344  df-ms 22345  df-tms 22346  df-cncf 22900
This theorem is referenced by:  evthicc2  23447
  Copyright terms: Public domain W3C validator