Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ivthALT Structured version   Visualization version   GIF version

Theorem ivthALT 32455
Description: An alternate proof of the Intermediate Value Theorem ivth 23269 using topology. (Contributed by Jeff Hankins, 17-Aug-2009.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
ivthALT (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → ∃𝑥 ∈ (𝐴(,)𝐵)(𝐹𝑥) = 𝑈)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐷   𝑥,𝐹   𝑥,𝑈

Proof of Theorem ivthALT
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 simp31 1117 . . . . . 6 (((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵)))) → 𝐹 ∈ (𝐷cn→ℂ))
2 cncff 22743 . . . . . 6 (𝐹 ∈ (𝐷cn→ℂ) → 𝐹:𝐷⟶ℂ)
31, 2syl 17 . . . . 5 (((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵)))) → 𝐹:𝐷⟶ℂ)
4 ffun 6086 . . . . 5 (𝐹:𝐷⟶ℂ → Fun 𝐹)
53, 4syl 17 . . . 4 (((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵)))) → Fun 𝐹)
653ad2ant3 1104 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → Fun 𝐹)
7 iccconn 22680 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) ∈ Conn)
873adant3 1101 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) → ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) ∈ Conn)
983ad2ant1 1102 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) ∈ Conn)
10 simpr1 1087 . . . . . . . . . . . . . 14 ((𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵)))) → 𝐹 ∈ (𝐷cn→ℂ))
1110, 2syl 17 . . . . . . . . . . . . 13 ((𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵)))) → 𝐹:𝐷⟶ℂ)
1211anim2i 592 . . . . . . . . . . . 12 (((𝐴[,]𝐵) ⊆ 𝐷 ∧ (𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → ((𝐴[,]𝐵) ⊆ 𝐷𝐹:𝐷⟶ℂ))
13123impb 1279 . . . . . . . . . . 11 (((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵)))) → ((𝐴[,]𝐵) ⊆ 𝐷𝐹:𝐷⟶ℂ))
14133ad2ant3 1104 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → ((𝐴[,]𝐵) ⊆ 𝐷𝐹:𝐷⟶ℂ))
154adantl 481 . . . . . . . . . . 11 (((𝐴[,]𝐵) ⊆ 𝐷𝐹:𝐷⟶ℂ) → Fun 𝐹)
16 fdm 6089 . . . . . . . . . . . . 13 (𝐹:𝐷⟶ℂ → dom 𝐹 = 𝐷)
1716sseq2d 3666 . . . . . . . . . . . 12 (𝐹:𝐷⟶ℂ → ((𝐴[,]𝐵) ⊆ dom 𝐹 ↔ (𝐴[,]𝐵) ⊆ 𝐷))
1817biimparc 503 . . . . . . . . . . 11 (((𝐴[,]𝐵) ⊆ 𝐷𝐹:𝐷⟶ℂ) → (𝐴[,]𝐵) ⊆ dom 𝐹)
1915, 18jca 553 . . . . . . . . . 10 (((𝐴[,]𝐵) ⊆ 𝐷𝐹:𝐷⟶ℂ) → (Fun 𝐹 ∧ (𝐴[,]𝐵) ⊆ dom 𝐹))
2014, 19syl 17 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → (Fun 𝐹 ∧ (𝐴[,]𝐵) ⊆ dom 𝐹))
21 fores 6162 . . . . . . . . 9 ((Fun 𝐹 ∧ (𝐴[,]𝐵) ⊆ dom 𝐹) → (𝐹 ↾ (𝐴[,]𝐵)):(𝐴[,]𝐵)–onto→(𝐹 “ (𝐴[,]𝐵)))
2220, 21syl 17 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → (𝐹 ↾ (𝐴[,]𝐵)):(𝐴[,]𝐵)–onto→(𝐹 “ (𝐴[,]𝐵)))
23 retop 22612 . . . . . . . . . 10 (topGen‘ran (,)) ∈ Top
24 simp332 1235 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ)
25 uniretop 22613 . . . . . . . . . . 11 ℝ = (topGen‘ran (,))
2625restuni 21014 . . . . . . . . . 10 (((topGen‘ran (,)) ∈ Top ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ) → (𝐹 “ (𝐴[,]𝐵)) = ((topGen‘ran (,)) ↾t (𝐹 “ (𝐴[,]𝐵))))
2723, 24, 26sylancr 696 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → (𝐹 “ (𝐴[,]𝐵)) = ((topGen‘ran (,)) ↾t (𝐹 “ (𝐴[,]𝐵))))
28 foeq3 6151 . . . . . . . . 9 ((𝐹 “ (𝐴[,]𝐵)) = ((topGen‘ran (,)) ↾t (𝐹 “ (𝐴[,]𝐵))) → ((𝐹 ↾ (𝐴[,]𝐵)):(𝐴[,]𝐵)–onto→(𝐹 “ (𝐴[,]𝐵)) ↔ (𝐹 ↾ (𝐴[,]𝐵)):(𝐴[,]𝐵)–onto ((topGen‘ran (,)) ↾t (𝐹 “ (𝐴[,]𝐵)))))
2927, 28syl 17 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → ((𝐹 ↾ (𝐴[,]𝐵)):(𝐴[,]𝐵)–onto→(𝐹 “ (𝐴[,]𝐵)) ↔ (𝐹 ↾ (𝐴[,]𝐵)):(𝐴[,]𝐵)–onto ((topGen‘ran (,)) ↾t (𝐹 “ (𝐴[,]𝐵)))))
3022, 29mpbid 222 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → (𝐹 ↾ (𝐴[,]𝐵)):(𝐴[,]𝐵)–onto ((topGen‘ran (,)) ↾t (𝐹 “ (𝐴[,]𝐵))))
31 simp331 1234 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → 𝐹 ∈ (𝐷cn→ℂ))
32 ssid 3657 . . . . . . . . . . . . . . 15 ℂ ⊆ ℂ
33 eqid 2651 . . . . . . . . . . . . . . . 16 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
34 eqid 2651 . . . . . . . . . . . . . . . 16 ((TopOpen‘ℂfld) ↾t 𝐷) = ((TopOpen‘ℂfld) ↾t 𝐷)
3533cnfldtop 22634 . . . . . . . . . . . . . . . . . 18 (TopOpen‘ℂfld) ∈ Top
3633cnfldtopon 22633 . . . . . . . . . . . . . . . . . . . 20 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
3736toponunii 20769 . . . . . . . . . . . . . . . . . . 19 ℂ = (TopOpen‘ℂfld)
3837restid 16141 . . . . . . . . . . . . . . . . . 18 ((TopOpen‘ℂfld) ∈ Top → ((TopOpen‘ℂfld) ↾t ℂ) = (TopOpen‘ℂfld))
3935, 38ax-mp 5 . . . . . . . . . . . . . . . . 17 ((TopOpen‘ℂfld) ↾t ℂ) = (TopOpen‘ℂfld)
4039eqcomi 2660 . . . . . . . . . . . . . . . 16 (TopOpen‘ℂfld) = ((TopOpen‘ℂfld) ↾t ℂ)
4133, 34, 40cncfcn 22759 . . . . . . . . . . . . . . 15 ((𝐷 ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝐷cn→ℂ) = (((TopOpen‘ℂfld) ↾t 𝐷) Cn (TopOpen‘ℂfld)))
4232, 41mpan2 707 . . . . . . . . . . . . . 14 (𝐷 ⊆ ℂ → (𝐷cn→ℂ) = (((TopOpen‘ℂfld) ↾t 𝐷) Cn (TopOpen‘ℂfld)))
43423ad2ant2 1103 . . . . . . . . . . . . 13 (((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵)))) → (𝐷cn→ℂ) = (((TopOpen‘ℂfld) ↾t 𝐷) Cn (TopOpen‘ℂfld)))
44433ad2ant3 1104 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → (𝐷cn→ℂ) = (((TopOpen‘ℂfld) ↾t 𝐷) Cn (TopOpen‘ℂfld)))
4531, 44eleqtrd 2732 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → 𝐹 ∈ (((TopOpen‘ℂfld) ↾t 𝐷) Cn (TopOpen‘ℂfld)))
46 simp31 1117 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → (𝐴[,]𝐵) ⊆ 𝐷)
47 simp32 1118 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → 𝐷 ⊆ ℂ)
48 resttopon 21013 . . . . . . . . . . . . . 14 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ 𝐷 ⊆ ℂ) → ((TopOpen‘ℂfld) ↾t 𝐷) ∈ (TopOn‘𝐷))
4936, 47, 48sylancr 696 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → ((TopOpen‘ℂfld) ↾t 𝐷) ∈ (TopOn‘𝐷))
50 toponuni 20767 . . . . . . . . . . . . 13 (((TopOpen‘ℂfld) ↾t 𝐷) ∈ (TopOn‘𝐷) → 𝐷 = ((TopOpen‘ℂfld) ↾t 𝐷))
5149, 50syl 17 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → 𝐷 = ((TopOpen‘ℂfld) ↾t 𝐷))
5246, 51sseqtrd 3674 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → (𝐴[,]𝐵) ⊆ ((TopOpen‘ℂfld) ↾t 𝐷))
53 eqid 2651 . . . . . . . . . . . 12 ((TopOpen‘ℂfld) ↾t 𝐷) = ((TopOpen‘ℂfld) ↾t 𝐷)
5453cnrest 21137 . . . . . . . . . . 11 ((𝐹 ∈ (((TopOpen‘ℂfld) ↾t 𝐷) Cn (TopOpen‘ℂfld)) ∧ (𝐴[,]𝐵) ⊆ ((TopOpen‘ℂfld) ↾t 𝐷)) → (𝐹 ↾ (𝐴[,]𝐵)) ∈ ((((TopOpen‘ℂfld) ↾t 𝐷) ↾t (𝐴[,]𝐵)) Cn (TopOpen‘ℂfld)))
5545, 52, 54syl2anc 694 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → (𝐹 ↾ (𝐴[,]𝐵)) ∈ ((((TopOpen‘ℂfld) ↾t 𝐷) ↾t (𝐴[,]𝐵)) Cn (TopOpen‘ℂfld)))
5635a1i 11 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → (TopOpen‘ℂfld) ∈ Top)
57 cnex 10055 . . . . . . . . . . . . . 14 ℂ ∈ V
58 ssexg 4837 . . . . . . . . . . . . . 14 ((𝐷 ⊆ ℂ ∧ ℂ ∈ V) → 𝐷 ∈ V)
5947, 57, 58sylancl 695 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → 𝐷 ∈ V)
60 restabs 21017 . . . . . . . . . . . . 13 (((TopOpen‘ℂfld) ∈ Top ∧ (𝐴[,]𝐵) ⊆ 𝐷𝐷 ∈ V) → (((TopOpen‘ℂfld) ↾t 𝐷) ↾t (𝐴[,]𝐵)) = ((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)))
6156, 46, 59, 60syl3anc 1366 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → (((TopOpen‘ℂfld) ↾t 𝐷) ↾t (𝐴[,]𝐵)) = ((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)))
62 iccssre 12293 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
63623adant3 1101 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
64633ad2ant1 1102 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → (𝐴[,]𝐵) ⊆ ℝ)
65 eqid 2651 . . . . . . . . . . . . . 14 (topGen‘ran (,)) = (topGen‘ran (,))
6633, 65rerest 22654 . . . . . . . . . . . . 13 ((𝐴[,]𝐵) ⊆ ℝ → ((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) = ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)))
6764, 66syl 17 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → ((TopOpen‘ℂfld) ↾t (𝐴[,]𝐵)) = ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)))
6861, 67eqtrd 2685 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → (((TopOpen‘ℂfld) ↾t 𝐷) ↾t (𝐴[,]𝐵)) = ((topGen‘ran (,)) ↾t (𝐴[,]𝐵)))
6968oveq1d 6705 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → ((((TopOpen‘ℂfld) ↾t 𝐷) ↾t (𝐴[,]𝐵)) Cn (TopOpen‘ℂfld)) = (((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) Cn (TopOpen‘ℂfld)))
7055, 69eleqtrd 2732 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → (𝐹 ↾ (𝐴[,]𝐵)) ∈ (((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) Cn (TopOpen‘ℂfld)))
7136a1i 11 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → (TopOpen‘ℂfld) ∈ (TopOn‘ℂ))
72 df-ima 5156 . . . . . . . . . . . 12 (𝐹 “ (𝐴[,]𝐵)) = ran (𝐹 ↾ (𝐴[,]𝐵))
7372eqimss2i 3693 . . . . . . . . . . 11 ran (𝐹 ↾ (𝐴[,]𝐵)) ⊆ (𝐹 “ (𝐴[,]𝐵))
7473a1i 11 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → ran (𝐹 ↾ (𝐴[,]𝐵)) ⊆ (𝐹 “ (𝐴[,]𝐵)))
75 ax-resscn 10031 . . . . . . . . . . 11 ℝ ⊆ ℂ
7624, 75syl6ss 3648 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → (𝐹 “ (𝐴[,]𝐵)) ⊆ ℂ)
77 cnrest2 21138 . . . . . . . . . 10 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ ran (𝐹 ↾ (𝐴[,]𝐵)) ⊆ (𝐹 “ (𝐴[,]𝐵)) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℂ) → ((𝐹 ↾ (𝐴[,]𝐵)) ∈ (((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) Cn (TopOpen‘ℂfld)) ↔ (𝐹 ↾ (𝐴[,]𝐵)) ∈ (((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) Cn ((TopOpen‘ℂfld) ↾t (𝐹 “ (𝐴[,]𝐵))))))
7871, 74, 76, 77syl3anc 1366 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → ((𝐹 ↾ (𝐴[,]𝐵)) ∈ (((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) Cn (TopOpen‘ℂfld)) ↔ (𝐹 ↾ (𝐴[,]𝐵)) ∈ (((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) Cn ((TopOpen‘ℂfld) ↾t (𝐹 “ (𝐴[,]𝐵))))))
7970, 78mpbid 222 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → (𝐹 ↾ (𝐴[,]𝐵)) ∈ (((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) Cn ((TopOpen‘ℂfld) ↾t (𝐹 “ (𝐴[,]𝐵)))))
8033, 65rerest 22654 . . . . . . . . . 10 ((𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ → ((TopOpen‘ℂfld) ↾t (𝐹 “ (𝐴[,]𝐵))) = ((topGen‘ran (,)) ↾t (𝐹 “ (𝐴[,]𝐵))))
8124, 80syl 17 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → ((TopOpen‘ℂfld) ↾t (𝐹 “ (𝐴[,]𝐵))) = ((topGen‘ran (,)) ↾t (𝐹 “ (𝐴[,]𝐵))))
8281oveq2d 6706 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → (((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) Cn ((TopOpen‘ℂfld) ↾t (𝐹 “ (𝐴[,]𝐵)))) = (((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) Cn ((topGen‘ran (,)) ↾t (𝐹 “ (𝐴[,]𝐵)))))
8379, 82eleqtrd 2732 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → (𝐹 ↾ (𝐴[,]𝐵)) ∈ (((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) Cn ((topGen‘ran (,)) ↾t (𝐹 “ (𝐴[,]𝐵)))))
84 eqid 2651 . . . . . . . 8 ((topGen‘ran (,)) ↾t (𝐹 “ (𝐴[,]𝐵))) = ((topGen‘ran (,)) ↾t (𝐹 “ (𝐴[,]𝐵)))
8584cnconn 21273 . . . . . . 7 ((((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) ∈ Conn ∧ (𝐹 ↾ (𝐴[,]𝐵)):(𝐴[,]𝐵)–onto ((topGen‘ran (,)) ↾t (𝐹 “ (𝐴[,]𝐵))) ∧ (𝐹 ↾ (𝐴[,]𝐵)) ∈ (((topGen‘ran (,)) ↾t (𝐴[,]𝐵)) Cn ((topGen‘ran (,)) ↾t (𝐹 “ (𝐴[,]𝐵))))) → ((topGen‘ran (,)) ↾t (𝐹 “ (𝐴[,]𝐵))) ∈ Conn)
869, 30, 83, 85syl3anc 1366 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → ((topGen‘ran (,)) ↾t (𝐹 “ (𝐴[,]𝐵))) ∈ Conn)
87 reconn 22678 . . . . . . . . 9 ((𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ → (((topGen‘ran (,)) ↾t (𝐹 “ (𝐴[,]𝐵))) ∈ Conn ↔ ∀𝑥 ∈ (𝐹 “ (𝐴[,]𝐵))∀𝑦 ∈ (𝐹 “ (𝐴[,]𝐵))(𝑥[,]𝑦) ⊆ (𝐹 “ (𝐴[,]𝐵))))
88873ad2ant2 1103 . . . . . . . 8 ((𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))) → (((topGen‘ran (,)) ↾t (𝐹 “ (𝐴[,]𝐵))) ∈ Conn ↔ ∀𝑥 ∈ (𝐹 “ (𝐴[,]𝐵))∀𝑦 ∈ (𝐹 “ (𝐴[,]𝐵))(𝑥[,]𝑦) ⊆ (𝐹 “ (𝐴[,]𝐵))))
89883ad2ant3 1104 . . . . . . 7 (((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵)))) → (((topGen‘ran (,)) ↾t (𝐹 “ (𝐴[,]𝐵))) ∈ Conn ↔ ∀𝑥 ∈ (𝐹 “ (𝐴[,]𝐵))∀𝑦 ∈ (𝐹 “ (𝐴[,]𝐵))(𝑥[,]𝑦) ⊆ (𝐹 “ (𝐴[,]𝐵))))
90893ad2ant3 1104 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → (((topGen‘ran (,)) ↾t (𝐹 “ (𝐴[,]𝐵))) ∈ Conn ↔ ∀𝑥 ∈ (𝐹 “ (𝐴[,]𝐵))∀𝑦 ∈ (𝐹 “ (𝐴[,]𝐵))(𝑥[,]𝑦) ⊆ (𝐹 “ (𝐴[,]𝐵))))
9186, 90mpbid 222 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → ∀𝑥 ∈ (𝐹 “ (𝐴[,]𝐵))∀𝑦 ∈ (𝐹 “ (𝐴[,]𝐵))(𝑥[,]𝑦) ⊆ (𝐹 “ (𝐴[,]𝐵)))
92 simp11 1111 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → 𝐴 ∈ ℝ)
9392rexrd 10127 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → 𝐴 ∈ ℝ*)
94 simp12 1112 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → 𝐵 ∈ ℝ)
9594rexrd 10127 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → 𝐵 ∈ ℝ*)
96 ltle 10164 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵𝐴𝐵))
9796imp 444 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝐴 < 𝐵) → 𝐴𝐵)
98973adantl3 1239 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵) → 𝐴𝐵)
99983adant3 1101 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → 𝐴𝐵)
100 lbicc2 12326 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐴 ∈ (𝐴[,]𝐵))
10193, 95, 99, 100syl3anc 1366 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → 𝐴 ∈ (𝐴[,]𝐵))
102 funfvima2 6533 . . . . . . 7 ((Fun 𝐹 ∧ (𝐴[,]𝐵) ⊆ dom 𝐹) → (𝐴 ∈ (𝐴[,]𝐵) → (𝐹𝐴) ∈ (𝐹 “ (𝐴[,]𝐵))))
10320, 101, 102sylc 65 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → (𝐹𝐴) ∈ (𝐹 “ (𝐴[,]𝐵)))
104 ubicc2 12327 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐵 ∈ (𝐴[,]𝐵))
10593, 95, 99, 104syl3anc 1366 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → 𝐵 ∈ (𝐴[,]𝐵))
106 funfvima2 6533 . . . . . . 7 ((Fun 𝐹 ∧ (𝐴[,]𝐵) ⊆ dom 𝐹) → (𝐵 ∈ (𝐴[,]𝐵) → (𝐹𝐵) ∈ (𝐹 “ (𝐴[,]𝐵))))
10720, 105, 106sylc 65 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → (𝐹𝐵) ∈ (𝐹 “ (𝐴[,]𝐵)))
108 oveq1 6697 . . . . . . . 8 (𝑥 = (𝐹𝐴) → (𝑥[,]𝑦) = ((𝐹𝐴)[,]𝑦))
109108sseq1d 3665 . . . . . . 7 (𝑥 = (𝐹𝐴) → ((𝑥[,]𝑦) ⊆ (𝐹 “ (𝐴[,]𝐵)) ↔ ((𝐹𝐴)[,]𝑦) ⊆ (𝐹 “ (𝐴[,]𝐵))))
110 oveq2 6698 . . . . . . . 8 (𝑦 = (𝐹𝐵) → ((𝐹𝐴)[,]𝑦) = ((𝐹𝐴)[,](𝐹𝐵)))
111110sseq1d 3665 . . . . . . 7 (𝑦 = (𝐹𝐵) → (((𝐹𝐴)[,]𝑦) ⊆ (𝐹 “ (𝐴[,]𝐵)) ↔ ((𝐹𝐴)[,](𝐹𝐵)) ⊆ (𝐹 “ (𝐴[,]𝐵))))
112109, 111rspc2v 3353 . . . . . 6 (((𝐹𝐴) ∈ (𝐹 “ (𝐴[,]𝐵)) ∧ (𝐹𝐵) ∈ (𝐹 “ (𝐴[,]𝐵))) → (∀𝑥 ∈ (𝐹 “ (𝐴[,]𝐵))∀𝑦 ∈ (𝐹 “ (𝐴[,]𝐵))(𝑥[,]𝑦) ⊆ (𝐹 “ (𝐴[,]𝐵)) → ((𝐹𝐴)[,](𝐹𝐵)) ⊆ (𝐹 “ (𝐴[,]𝐵))))
113103, 107, 112syl2anc 694 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → (∀𝑥 ∈ (𝐹 “ (𝐴[,]𝐵))∀𝑦 ∈ (𝐹 “ (𝐴[,]𝐵))(𝑥[,]𝑦) ⊆ (𝐹 “ (𝐴[,]𝐵)) → ((𝐹𝐴)[,](𝐹𝐵)) ⊆ (𝐹 “ (𝐴[,]𝐵))))
11491, 113mpd 15 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → ((𝐹𝐴)[,](𝐹𝐵)) ⊆ (𝐹 “ (𝐴[,]𝐵)))
115 ioossicc 12297 . . . . . . . 8 ((𝐹𝐴)(,)(𝐹𝐵)) ⊆ ((𝐹𝐴)[,](𝐹𝐵))
116115sseli 3632 . . . . . . 7 (𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵)) → 𝑈 ∈ ((𝐹𝐴)[,](𝐹𝐵)))
1171163ad2ant3 1104 . . . . . 6 ((𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))) → 𝑈 ∈ ((𝐹𝐴)[,](𝐹𝐵)))
1181173ad2ant3 1104 . . . . 5 (((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵)))) → 𝑈 ∈ ((𝐹𝐴)[,](𝐹𝐵)))
1191183ad2ant3 1104 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → 𝑈 ∈ ((𝐹𝐴)[,](𝐹𝐵)))
120114, 119sseldd 3637 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → 𝑈 ∈ (𝐹 “ (𝐴[,]𝐵)))
121 fvelima 6287 . . 3 ((Fun 𝐹𝑈 ∈ (𝐹 “ (𝐴[,]𝐵))) → ∃𝑥 ∈ (𝐴[,]𝐵)(𝐹𝑥) = 𝑈)
1226, 120, 121syl2anc 694 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → ∃𝑥 ∈ (𝐴[,]𝐵)(𝐹𝑥) = 𝑈)
123 simpl1 1084 . . . . . . . 8 (((𝑥 ∈ ℝ*𝐴𝐵 ∧ (𝑥 = 𝐴 ∨ (𝐴 < 𝑥𝑥 < 𝐵) ∨ 𝑥 = 𝐵)) ∧ (𝐹𝑥) = 𝑈) → 𝑥 ∈ ℝ*)
124123a1i 11 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → (((𝑥 ∈ ℝ*𝐴𝐵 ∧ (𝑥 = 𝐴 ∨ (𝐴 < 𝑥𝑥 < 𝐵) ∨ 𝑥 = 𝐵)) ∧ (𝐹𝑥) = 𝑈) → 𝑥 ∈ ℝ*))
125 simprr 811 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) ∧ ((𝑥 ∈ ℝ*𝐴𝐵 ∧ (𝑥 = 𝐴 ∨ (𝐴 < 𝑥𝑥 < 𝐵) ∨ 𝑥 = 𝐵)) ∧ (𝐹𝑥) = 𝑈)) → (𝐹𝑥) = 𝑈)
12624, 103sseldd 3637 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → (𝐹𝐴) ∈ ℝ)
127 simp333 1236 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵)))
128126rexrd 10127 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → (𝐹𝐴) ∈ ℝ*)
12924, 107sseldd 3637 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → (𝐹𝐵) ∈ ℝ)
130129rexrd 10127 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → (𝐹𝐵) ∈ ℝ*)
131 elioo2 12254 . . . . . . . . . . . . . . . . 17 (((𝐹𝐴) ∈ ℝ* ∧ (𝐹𝐵) ∈ ℝ*) → (𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵)) ↔ (𝑈 ∈ ℝ ∧ (𝐹𝐴) < 𝑈𝑈 < (𝐹𝐵))))
132128, 130, 131syl2anc 694 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → (𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵)) ↔ (𝑈 ∈ ℝ ∧ (𝐹𝐴) < 𝑈𝑈 < (𝐹𝐵))))
133127, 132mpbid 222 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → (𝑈 ∈ ℝ ∧ (𝐹𝐴) < 𝑈𝑈 < (𝐹𝐵)))
134133simp2d 1094 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → (𝐹𝐴) < 𝑈)
135126, 134gtned 10210 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → 𝑈 ≠ (𝐹𝐴))
136135adantr 480 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) ∧ ((𝑥 ∈ ℝ*𝐴𝐵 ∧ (𝑥 = 𝐴 ∨ (𝐴 < 𝑥𝑥 < 𝐵) ∨ 𝑥 = 𝐵)) ∧ (𝐹𝑥) = 𝑈)) → 𝑈 ≠ (𝐹𝐴))
137125, 136eqnetrd 2890 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) ∧ ((𝑥 ∈ ℝ*𝐴𝐵 ∧ (𝑥 = 𝐴 ∨ (𝐴 < 𝑥𝑥 < 𝐵) ∨ 𝑥 = 𝐵)) ∧ (𝐹𝑥) = 𝑈)) → (𝐹𝑥) ≠ (𝐹𝐴))
138137neneqd 2828 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) ∧ ((𝑥 ∈ ℝ*𝐴𝐵 ∧ (𝑥 = 𝐴 ∨ (𝐴 < 𝑥𝑥 < 𝐵) ∨ 𝑥 = 𝐵)) ∧ (𝐹𝑥) = 𝑈)) → ¬ (𝐹𝑥) = (𝐹𝐴))
139 fveq2 6229 . . . . . . . . . 10 (𝑥 = 𝐴 → (𝐹𝑥) = (𝐹𝐴))
140138, 139nsyl 135 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) ∧ ((𝑥 ∈ ℝ*𝐴𝐵 ∧ (𝑥 = 𝐴 ∨ (𝐴 < 𝑥𝑥 < 𝐵) ∨ 𝑥 = 𝐵)) ∧ (𝐹𝑥) = 𝑈)) → ¬ 𝑥 = 𝐴)
141 simp13 1113 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → 𝑈 ∈ ℝ)
142133simp3d 1095 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → 𝑈 < (𝐹𝐵))
143141, 142ltned 10211 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → 𝑈 ≠ (𝐹𝐵))
144143adantr 480 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) ∧ ((𝑥 ∈ ℝ*𝐴𝐵 ∧ (𝑥 = 𝐴 ∨ (𝐴 < 𝑥𝑥 < 𝐵) ∨ 𝑥 = 𝐵)) ∧ (𝐹𝑥) = 𝑈)) → 𝑈 ≠ (𝐹𝐵))
145125, 144eqnetrd 2890 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) ∧ ((𝑥 ∈ ℝ*𝐴𝐵 ∧ (𝑥 = 𝐴 ∨ (𝐴 < 𝑥𝑥 < 𝐵) ∨ 𝑥 = 𝐵)) ∧ (𝐹𝑥) = 𝑈)) → (𝐹𝑥) ≠ (𝐹𝐵))
146145neneqd 2828 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) ∧ ((𝑥 ∈ ℝ*𝐴𝐵 ∧ (𝑥 = 𝐴 ∨ (𝐴 < 𝑥𝑥 < 𝐵) ∨ 𝑥 = 𝐵)) ∧ (𝐹𝑥) = 𝑈)) → ¬ (𝐹𝑥) = (𝐹𝐵))
147 fveq2 6229 . . . . . . . . . 10 (𝑥 = 𝐵 → (𝐹𝑥) = (𝐹𝐵))
148146, 147nsyl 135 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) ∧ ((𝑥 ∈ ℝ*𝐴𝐵 ∧ (𝑥 = 𝐴 ∨ (𝐴 < 𝑥𝑥 < 𝐵) ∨ 𝑥 = 𝐵)) ∧ (𝐹𝑥) = 𝑈)) → ¬ 𝑥 = 𝐵)
149 simprl3 1128 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) ∧ ((𝑥 ∈ ℝ*𝐴𝐵 ∧ (𝑥 = 𝐴 ∨ (𝐴 < 𝑥𝑥 < 𝐵) ∨ 𝑥 = 𝐵)) ∧ (𝐹𝑥) = 𝑈)) → (𝑥 = 𝐴 ∨ (𝐴 < 𝑥𝑥 < 𝐵) ∨ 𝑥 = 𝐵))
150140, 148, 149ecase13d 32432 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) ∧ ((𝑥 ∈ ℝ*𝐴𝐵 ∧ (𝑥 = 𝐴 ∨ (𝐴 < 𝑥𝑥 < 𝐵) ∨ 𝑥 = 𝐵)) ∧ (𝐹𝑥) = 𝑈)) → (𝐴 < 𝑥𝑥 < 𝐵))
151150ex 449 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → (((𝑥 ∈ ℝ*𝐴𝐵 ∧ (𝑥 = 𝐴 ∨ (𝐴 < 𝑥𝑥 < 𝐵) ∨ 𝑥 = 𝐵)) ∧ (𝐹𝑥) = 𝑈) → (𝐴 < 𝑥𝑥 < 𝐵)))
152124, 151jcad 554 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → (((𝑥 ∈ ℝ*𝐴𝐵 ∧ (𝑥 = 𝐴 ∨ (𝐴 < 𝑥𝑥 < 𝐵) ∨ 𝑥 = 𝐵)) ∧ (𝐹𝑥) = 𝑈) → (𝑥 ∈ ℝ* ∧ (𝐴 < 𝑥𝑥 < 𝐵))))
153 3anass 1059 . . . . . 6 ((𝑥 ∈ ℝ*𝐴 < 𝑥𝑥 < 𝐵) ↔ (𝑥 ∈ ℝ* ∧ (𝐴 < 𝑥𝑥 < 𝐵)))
154152, 153syl6ibr 242 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → (((𝑥 ∈ ℝ*𝐴𝐵 ∧ (𝑥 = 𝐴 ∨ (𝐴 < 𝑥𝑥 < 𝐵) ∨ 𝑥 = 𝐵)) ∧ (𝐹𝑥) = 𝑈) → (𝑥 ∈ ℝ*𝐴 < 𝑥𝑥 < 𝐵)))
155 rexr 10123 . . . . . . . . 9 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*)
156 rexr 10123 . . . . . . . . 9 (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*)
157 elicc3 32436 . . . . . . . . 9 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝑥 ∈ ℝ*𝐴𝐵 ∧ (𝑥 = 𝐴 ∨ (𝐴 < 𝑥𝑥 < 𝐵) ∨ 𝑥 = 𝐵))))
158155, 156, 157syl2an 493 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝑥 ∈ ℝ*𝐴𝐵 ∧ (𝑥 = 𝐴 ∨ (𝐴 < 𝑥𝑥 < 𝐵) ∨ 𝑥 = 𝐵))))
1591583adant3 1101 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝑥 ∈ ℝ*𝐴𝐵 ∧ (𝑥 = 𝐴 ∨ (𝐴 < 𝑥𝑥 < 𝐵) ∨ 𝑥 = 𝐵))))
1601593ad2ant1 1102 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝑥 ∈ ℝ*𝐴𝐵 ∧ (𝑥 = 𝐴 ∨ (𝐴 < 𝑥𝑥 < 𝐵) ∨ 𝑥 = 𝐵))))
161160anbi1d 741 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → ((𝑥 ∈ (𝐴[,]𝐵) ∧ (𝐹𝑥) = 𝑈) ↔ ((𝑥 ∈ ℝ*𝐴𝐵 ∧ (𝑥 = 𝐴 ∨ (𝐴 < 𝑥𝑥 < 𝐵) ∨ 𝑥 = 𝐵)) ∧ (𝐹𝑥) = 𝑈)))
162 elioo1 12253 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝑥 ∈ (𝐴(,)𝐵) ↔ (𝑥 ∈ ℝ*𝐴 < 𝑥𝑥 < 𝐵)))
163155, 156, 162syl2an 493 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑥 ∈ (𝐴(,)𝐵) ↔ (𝑥 ∈ ℝ*𝐴 < 𝑥𝑥 < 𝐵)))
1641633adant3 1101 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) → (𝑥 ∈ (𝐴(,)𝐵) ↔ (𝑥 ∈ ℝ*𝐴 < 𝑥𝑥 < 𝐵)))
1651643ad2ant1 1102 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → (𝑥 ∈ (𝐴(,)𝐵) ↔ (𝑥 ∈ ℝ*𝐴 < 𝑥𝑥 < 𝐵)))
166154, 161, 1653imtr4d 283 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → ((𝑥 ∈ (𝐴[,]𝐵) ∧ (𝐹𝑥) = 𝑈) → 𝑥 ∈ (𝐴(,)𝐵)))
167 simpr 476 . . . . 5 ((𝑥 ∈ (𝐴[,]𝐵) ∧ (𝐹𝑥) = 𝑈) → (𝐹𝑥) = 𝑈)
168167a1i 11 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → ((𝑥 ∈ (𝐴[,]𝐵) ∧ (𝐹𝑥) = 𝑈) → (𝐹𝑥) = 𝑈))
169166, 168jcad 554 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → ((𝑥 ∈ (𝐴[,]𝐵) ∧ (𝐹𝑥) = 𝑈) → (𝑥 ∈ (𝐴(,)𝐵) ∧ (𝐹𝑥) = 𝑈)))
170169reximdv2 3043 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → (∃𝑥 ∈ (𝐴[,]𝐵)(𝐹𝑥) = 𝑈 → ∃𝑥 ∈ (𝐴(,)𝐵)(𝐹𝑥) = 𝑈))
171122, 170mpd 15 1 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑈 ∈ ℝ) ∧ 𝐴 < 𝐵 ∧ ((𝐴[,]𝐵) ⊆ 𝐷𝐷 ⊆ ℂ ∧ (𝐹 ∈ (𝐷cn→ℂ) ∧ (𝐹 “ (𝐴[,]𝐵)) ⊆ ℝ ∧ 𝑈 ∈ ((𝐹𝐴)(,)(𝐹𝐵))))) → ∃𝑥 ∈ (𝐴(,)𝐵)(𝐹𝑥) = 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3o 1053  w3a 1054   = wceq 1523  wcel 2030  wne 2823  wral 2941  wrex 2942  Vcvv 3231  wss 3607   cuni 4468   class class class wbr 4685  dom cdm 5143  ran crn 5144  cres 5145  cima 5146  Fun wfun 5920  wf 5922  ontowfo 5924  cfv 5926  (class class class)co 6690  cc 9972  cr 9973  *cxr 10111   < clt 10112  cle 10113  (,)cioo 12213  [,]cicc 12216  t crest 16128  TopOpenctopn 16129  topGenctg 16145  fldccnfld 19794  Topctop 20746  TopOnctopon 20763   Cn ccn 21076  Conncconn 21262  cnccncf 22726
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-map 7901  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-fi 8358  df-sup 8389  df-inf 8390  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-n0 11331  df-z 11416  df-dec 11532  df-uz 11726  df-q 11827  df-rp 11871  df-xneg 11984  df-xadd 11985  df-xmul 11986  df-ioo 12217  df-ico 12219  df-icc 12220  df-fz 12365  df-seq 12842  df-exp 12901  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-plusg 16001  df-mulr 16002  df-starv 16003  df-tset 16007  df-ple 16008  df-ds 16011  df-unif 16012  df-rest 16130  df-topn 16131  df-topgen 16151  df-psmet 19786  df-xmet 19787  df-met 19788  df-bl 19789  df-mopn 19790  df-cnfld 19795  df-top 20747  df-topon 20764  df-topsp 20785  df-bases 20798  df-cld 20871  df-cn 21079  df-cnp 21080  df-conn 21263  df-xms 22172  df-ms 22173  df-cncf 22728
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator