![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iunxsn | Structured version Visualization version GIF version |
Description: A singleton index picks out an instance of an indexed union's argument. (Contributed by NM, 26-Mar-2004.) (Proof shortened by Mario Carneiro, 25-Jun-2016.) |
Ref | Expression |
---|---|
iunxsn.1 | ⊢ 𝐴 ∈ V |
iunxsn.2 | ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
iunxsn | ⊢ ∪ 𝑥 ∈ {𝐴}𝐵 = 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iunxsn.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | iunxsn.2 | . . 3 ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) | |
3 | 2 | iunxsng 4754 | . 2 ⊢ (𝐴 ∈ V → ∪ 𝑥 ∈ {𝐴}𝐵 = 𝐶) |
4 | 1, 3 | ax-mp 5 | 1 ⊢ ∪ 𝑥 ∈ {𝐴}𝐵 = 𝐶 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1632 ∈ wcel 2139 Vcvv 3340 {csn 4321 ∪ ciun 4672 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ral 3055 df-rex 3056 df-v 3342 df-sbc 3577 df-sn 4322 df-iun 4674 |
This theorem is referenced by: iunsuc 5968 funopsn 6576 fparlem3 7447 fparlem4 7448 iunfi 8419 kmlem11 9174 ackbij1lem8 9241 dfid6 13967 fsum2dlem 14700 fsumiun 14752 fprod2dlem 14909 prmreclem4 15825 fiuncmp 21409 ovolfiniun 23469 finiunmbl 23512 volfiniun 23515 voliunlem1 23518 iuninc 29686 cvmliftlem10 31583 mrsubvrs 31726 dfrcl4 38470 iunrelexp0 38496 corclrcl 38501 cotrcltrcl 38519 trclfvdecomr 38522 dfrtrcl4 38532 corcltrcl 38533 cotrclrcl 38536 |
Copyright terms: Public domain | W3C validator |