MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iunsuc Structured version   Visualization version   GIF version

Theorem iunsuc 5960
Description: Inductive definition for the indexed union at a successor. (Contributed by Mario Carneiro, 4-Feb-2013.) (Proof shortened by Mario Carneiro, 18-Nov-2016.)
Hypotheses
Ref Expression
iunsuc.1 𝐴 ∈ V
iunsuc.2 (𝑥 = 𝐴𝐵 = 𝐶)
Assertion
Ref Expression
iunsuc 𝑥 ∈ suc 𝐴𝐵 = ( 𝑥𝐴 𝐵𝐶)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem iunsuc
StepHypRef Expression
1 df-suc 5882 . . 3 suc 𝐴 = (𝐴 ∪ {𝐴})
2 iuneq1 4678 . . 3 (suc 𝐴 = (𝐴 ∪ {𝐴}) → 𝑥 ∈ suc 𝐴𝐵 = 𝑥 ∈ (𝐴 ∪ {𝐴})𝐵)
31, 2ax-mp 5 . 2 𝑥 ∈ suc 𝐴𝐵 = 𝑥 ∈ (𝐴 ∪ {𝐴})𝐵
4 iunxun 4749 . 2 𝑥 ∈ (𝐴 ∪ {𝐴})𝐵 = ( 𝑥𝐴 𝐵 𝑥 ∈ {𝐴}𝐵)
5 iunsuc.1 . . . 4 𝐴 ∈ V
6 iunsuc.2 . . . 4 (𝑥 = 𝐴𝐵 = 𝐶)
75, 6iunxsn 4747 . . 3 𝑥 ∈ {𝐴}𝐵 = 𝐶
87uneq2i 3899 . 2 ( 𝑥𝐴 𝐵 𝑥 ∈ {𝐴}𝐵) = ( 𝑥𝐴 𝐵𝐶)
93, 4, 83eqtri 2778 1 𝑥 ∈ suc 𝐴𝐵 = ( 𝑥𝐴 𝐵𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1624  wcel 2131  Vcvv 3332  cun 3705  {csn 4313   ciun 4664  suc csuc 5878
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1863  ax-4 1878  ax-5 1980  ax-6 2046  ax-7 2082  ax-9 2140  ax-10 2160  ax-11 2175  ax-12 2188  ax-13 2383  ax-ext 2732
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1627  df-ex 1846  df-nf 1851  df-sb 2039  df-clab 2739  df-cleq 2745  df-clel 2748  df-nfc 2883  df-ral 3047  df-rex 3048  df-v 3334  df-sbc 3569  df-un 3712  df-in 3714  df-ss 3721  df-sn 4314  df-iun 4666  df-suc 5882
This theorem is referenced by:  pwsdompw  9210
  Copyright terms: Public domain W3C validator