Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  iunss1 Structured version   Visualization version   GIF version

Theorem iunss1 4667
 Description: Subclass theorem for indexed union. (Contributed by NM, 10-Dec-2004.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
Assertion
Ref Expression
iunss1 (𝐴𝐵 𝑥𝐴 𝐶 𝑥𝐵 𝐶)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝐶(𝑥)

Proof of Theorem iunss1
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ssrexv 3816 . . 3 (𝐴𝐵 → (∃𝑥𝐴 𝑦𝐶 → ∃𝑥𝐵 𝑦𝐶))
2 eliun 4659 . . 3 (𝑦 𝑥𝐴 𝐶 ↔ ∃𝑥𝐴 𝑦𝐶)
3 eliun 4659 . . 3 (𝑦 𝑥𝐵 𝐶 ↔ ∃𝑥𝐵 𝑦𝐶)
41, 2, 33imtr4g 285 . 2 (𝐴𝐵 → (𝑦 𝑥𝐴 𝐶𝑦 𝑥𝐵 𝐶))
54ssrdv 3758 1 (𝐴𝐵 𝑥𝐴 𝐶 𝑥𝐵 𝐶)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∈ wcel 2145  ∃wrex 3062   ⊆ wss 3723  ∪ ciun 4655 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ral 3066  df-rex 3067  df-v 3353  df-in 3730  df-ss 3737  df-iun 4657 This theorem is referenced by:  iuneq1  4669  iunxdif2  4703  oelim2  7833  fsumiun  14760  ovolfiniun  23489  uniioovol  23567  fusgreghash2wspv  27517  esum2dlem  30494  esum2d  30495  carsgclctunlem2  30721  bnj1413  31441  bnj1408  31442  volsupnfl  33787  corclrcl  38525  cotrcltrcl  38543  iuneqfzuzlem  40063  fsumiunss  40322  sge0iunmptlemfi  41144  sge0iunmptlemre  41146  carageniuncllem1  41252  carageniuncllem2  41253  caratheodorylem2  41258  ovnsubaddlem1  41301
 Copyright terms: Public domain W3C validator