![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iunss1 | Structured version Visualization version GIF version |
Description: Subclass theorem for indexed union. (Contributed by NM, 10-Dec-2004.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
Ref | Expression |
---|---|
iunss1 | ⊢ (𝐴 ⊆ 𝐵 → ∪ 𝑥 ∈ 𝐴 𝐶 ⊆ ∪ 𝑥 ∈ 𝐵 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrexv 3816 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐶 → ∃𝑥 ∈ 𝐵 𝑦 ∈ 𝐶)) | |
2 | eliun 4659 | . . 3 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐶 ↔ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐶) | |
3 | eliun 4659 | . . 3 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ 𝐵 𝐶 ↔ ∃𝑥 ∈ 𝐵 𝑦 ∈ 𝐶) | |
4 | 1, 2, 3 | 3imtr4g 285 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐶 → 𝑦 ∈ ∪ 𝑥 ∈ 𝐵 𝐶)) |
5 | 4 | ssrdv 3758 | 1 ⊢ (𝐴 ⊆ 𝐵 → ∪ 𝑥 ∈ 𝐴 𝐶 ⊆ ∪ 𝑥 ∈ 𝐵 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2145 ∃wrex 3062 ⊆ wss 3723 ∪ ciun 4655 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ral 3066 df-rex 3067 df-v 3353 df-in 3730 df-ss 3737 df-iun 4657 |
This theorem is referenced by: iuneq1 4669 iunxdif2 4703 oelim2 7833 fsumiun 14760 ovolfiniun 23489 uniioovol 23567 fusgreghash2wspv 27517 esum2dlem 30494 esum2d 30495 carsgclctunlem2 30721 bnj1413 31441 bnj1408 31442 volsupnfl 33787 corclrcl 38525 cotrcltrcl 38543 iuneqfzuzlem 40063 fsumiunss 40322 sge0iunmptlemfi 41144 sge0iunmptlemre 41146 carageniuncllem1 41252 carageniuncllem2 41253 caratheodorylem2 41258 ovnsubaddlem1 41301 |
Copyright terms: Public domain | W3C validator |