![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iunmapdisj | Structured version Visualization version GIF version |
Description: The union ∪ 𝑛 ∈ 𝐶(𝐴 ↑𝑚 𝑛) is a disjoint union. (Contributed by Mario Carneiro, 17-May-2015.) (Revised by NM, 16-Jun-2017.) |
Ref | Expression |
---|---|
iunmapdisj | ⊢ ∃*𝑛 ∈ 𝐶 𝐵 ∈ (𝐴 ↑𝑚 𝑛) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | moeq 3523 | . . . 4 ⊢ ∃*𝑛 𝑛 = dom 𝐵 | |
2 | elmapi 8047 | . . . . . 6 ⊢ (𝐵 ∈ (𝐴 ↑𝑚 𝑛) → 𝐵:𝑛⟶𝐴) | |
3 | fdm 6212 | . . . . . . 7 ⊢ (𝐵:𝑛⟶𝐴 → dom 𝐵 = 𝑛) | |
4 | 3 | eqcomd 2766 | . . . . . 6 ⊢ (𝐵:𝑛⟶𝐴 → 𝑛 = dom 𝐵) |
5 | 2, 4 | syl 17 | . . . . 5 ⊢ (𝐵 ∈ (𝐴 ↑𝑚 𝑛) → 𝑛 = dom 𝐵) |
6 | 5 | moimi 2658 | . . . 4 ⊢ (∃*𝑛 𝑛 = dom 𝐵 → ∃*𝑛 𝐵 ∈ (𝐴 ↑𝑚 𝑛)) |
7 | 1, 6 | ax-mp 5 | . . 3 ⊢ ∃*𝑛 𝐵 ∈ (𝐴 ↑𝑚 𝑛) |
8 | 7 | moani 2663 | . 2 ⊢ ∃*𝑛(𝑛 ∈ 𝐶 ∧ 𝐵 ∈ (𝐴 ↑𝑚 𝑛)) |
9 | df-rmo 3058 | . 2 ⊢ (∃*𝑛 ∈ 𝐶 𝐵 ∈ (𝐴 ↑𝑚 𝑛) ↔ ∃*𝑛(𝑛 ∈ 𝐶 ∧ 𝐵 ∈ (𝐴 ↑𝑚 𝑛))) | |
10 | 8, 9 | mpbir 221 | 1 ⊢ ∃*𝑛 ∈ 𝐶 𝐵 ∈ (𝐴 ↑𝑚 𝑛) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 383 = wceq 1632 ∈ wcel 2139 ∃*wmo 2608 ∃*wrmo 3053 dom cdm 5266 ⟶wf 6045 (class class class)co 6814 ↑𝑚 cmap 8025 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-fv 6057 df-ov 6817 df-oprab 6818 df-mpt2 6819 df-1st 7334 df-2nd 7335 df-map 8027 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |