Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iunincfi Structured version   Visualization version   GIF version

Theorem iunincfi 39586
Description: Given a sequence of increasing sets, the union of a finite subsequence, is its last element. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypotheses
Ref Expression
iunincfi.1 (𝜑𝑁 ∈ (ℤ𝑀))
iunincfi.2 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1)))
Assertion
Ref Expression
iunincfi (𝜑 𝑛 ∈ (𝑀...𝑁)(𝐹𝑛) = (𝐹𝑁))
Distinct variable groups:   𝑛,𝐹   𝑛,𝑀   𝑛,𝑁   𝜑,𝑛

Proof of Theorem iunincfi
Dummy variables 𝑚 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eliun 4556 . . . . . . 7 (𝑥 𝑛 ∈ (𝑀...𝑁)(𝐹𝑛) ↔ ∃𝑛 ∈ (𝑀...𝑁)𝑥 ∈ (𝐹𝑛))
21biimpi 206 . . . . . 6 (𝑥 𝑛 ∈ (𝑀...𝑁)(𝐹𝑛) → ∃𝑛 ∈ (𝑀...𝑁)𝑥 ∈ (𝐹𝑛))
32adantl 481 . . . . 5 ((𝜑𝑥 𝑛 ∈ (𝑀...𝑁)(𝐹𝑛)) → ∃𝑛 ∈ (𝑀...𝑁)𝑥 ∈ (𝐹𝑛))
4 elfzuz3 12377 . . . . . . . . . . . 12 (𝑛 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ𝑛))
54adantl 481 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (𝑀...𝑁)) → 𝑁 ∈ (ℤ𝑛))
6 simpll 805 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ (𝑀...𝑁)) ∧ 𝑚 ∈ (𝑛..^𝑁)) → 𝜑)
7 elfzuz 12376 . . . . . . . . . . . . . . . 16 (𝑛 ∈ (𝑀...𝑁) → 𝑛 ∈ (ℤ𝑀))
8 fzoss1 12534 . . . . . . . . . . . . . . . 16 (𝑛 ∈ (ℤ𝑀) → (𝑛..^𝑁) ⊆ (𝑀..^𝑁))
97, 8syl 17 . . . . . . . . . . . . . . 15 (𝑛 ∈ (𝑀...𝑁) → (𝑛..^𝑁) ⊆ (𝑀..^𝑁))
109adantr 480 . . . . . . . . . . . . . 14 ((𝑛 ∈ (𝑀...𝑁) ∧ 𝑚 ∈ (𝑛..^𝑁)) → (𝑛..^𝑁) ⊆ (𝑀..^𝑁))
11 simpr 476 . . . . . . . . . . . . . 14 ((𝑛 ∈ (𝑀...𝑁) ∧ 𝑚 ∈ (𝑛..^𝑁)) → 𝑚 ∈ (𝑛..^𝑁))
1210, 11sseldd 3637 . . . . . . . . . . . . 13 ((𝑛 ∈ (𝑀...𝑁) ∧ 𝑚 ∈ (𝑛..^𝑁)) → 𝑚 ∈ (𝑀..^𝑁))
1312adantll 750 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ (𝑀...𝑁)) ∧ 𝑚 ∈ (𝑛..^𝑁)) → 𝑚 ∈ (𝑀..^𝑁))
14 eleq1 2718 . . . . . . . . . . . . . . 15 (𝑛 = 𝑚 → (𝑛 ∈ (𝑀..^𝑁) ↔ 𝑚 ∈ (𝑀..^𝑁)))
1514anbi2d 740 . . . . . . . . . . . . . 14 (𝑛 = 𝑚 → ((𝜑𝑛 ∈ (𝑀..^𝑁)) ↔ (𝜑𝑚 ∈ (𝑀..^𝑁))))
16 fveq2 6229 . . . . . . . . . . . . . . 15 (𝑛 = 𝑚 → (𝐹𝑛) = (𝐹𝑚))
17 oveq1 6697 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑚 → (𝑛 + 1) = (𝑚 + 1))
1817fveq2d 6233 . . . . . . . . . . . . . . 15 (𝑛 = 𝑚 → (𝐹‘(𝑛 + 1)) = (𝐹‘(𝑚 + 1)))
1916, 18sseq12d 3667 . . . . . . . . . . . . . 14 (𝑛 = 𝑚 → ((𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1)) ↔ (𝐹𝑚) ⊆ (𝐹‘(𝑚 + 1))))
2015, 19imbi12d 333 . . . . . . . . . . . . 13 (𝑛 = 𝑚 → (((𝜑𝑛 ∈ (𝑀..^𝑁)) → (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1))) ↔ ((𝜑𝑚 ∈ (𝑀..^𝑁)) → (𝐹𝑚) ⊆ (𝐹‘(𝑚 + 1)))))
21 iunincfi.2 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → (𝐹𝑛) ⊆ (𝐹‘(𝑛 + 1)))
2220, 21chvarv 2299 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ (𝑀..^𝑁)) → (𝐹𝑚) ⊆ (𝐹‘(𝑚 + 1)))
236, 13, 22syl2anc 694 . . . . . . . . . . 11 (((𝜑𝑛 ∈ (𝑀...𝑁)) ∧ 𝑚 ∈ (𝑛..^𝑁)) → (𝐹𝑚) ⊆ (𝐹‘(𝑚 + 1)))
245, 23ssinc 39578 . . . . . . . . . 10 ((𝜑𝑛 ∈ (𝑀...𝑁)) → (𝐹𝑛) ⊆ (𝐹𝑁))
25243adant3 1101 . . . . . . . . 9 ((𝜑𝑛 ∈ (𝑀...𝑁) ∧ 𝑥 ∈ (𝐹𝑛)) → (𝐹𝑛) ⊆ (𝐹𝑁))
26 simp3 1083 . . . . . . . . 9 ((𝜑𝑛 ∈ (𝑀...𝑁) ∧ 𝑥 ∈ (𝐹𝑛)) → 𝑥 ∈ (𝐹𝑛))
2725, 26sseldd 3637 . . . . . . . 8 ((𝜑𝑛 ∈ (𝑀...𝑁) ∧ 𝑥 ∈ (𝐹𝑛)) → 𝑥 ∈ (𝐹𝑁))
28273exp 1283 . . . . . . 7 (𝜑 → (𝑛 ∈ (𝑀...𝑁) → (𝑥 ∈ (𝐹𝑛) → 𝑥 ∈ (𝐹𝑁))))
2928rexlimdv 3059 . . . . . 6 (𝜑 → (∃𝑛 ∈ (𝑀...𝑁)𝑥 ∈ (𝐹𝑛) → 𝑥 ∈ (𝐹𝑁)))
3029imp 444 . . . . 5 ((𝜑 ∧ ∃𝑛 ∈ (𝑀...𝑁)𝑥 ∈ (𝐹𝑛)) → 𝑥 ∈ (𝐹𝑁))
313, 30syldan 486 . . . 4 ((𝜑𝑥 𝑛 ∈ (𝑀...𝑁)(𝐹𝑛)) → 𝑥 ∈ (𝐹𝑁))
3231ralrimiva 2995 . . 3 (𝜑 → ∀𝑥 𝑛 ∈ (𝑀...𝑁)(𝐹𝑛)𝑥 ∈ (𝐹𝑁))
33 dfss3 3625 . . 3 ( 𝑛 ∈ (𝑀...𝑁)(𝐹𝑛) ⊆ (𝐹𝑁) ↔ ∀𝑥 𝑛 ∈ (𝑀...𝑁)(𝐹𝑛)𝑥 ∈ (𝐹𝑁))
3432, 33sylibr 224 . 2 (𝜑 𝑛 ∈ (𝑀...𝑁)(𝐹𝑛) ⊆ (𝐹𝑁))
35 iunincfi.1 . . . 4 (𝜑𝑁 ∈ (ℤ𝑀))
36 eluzfz2 12387 . . . 4 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ (𝑀...𝑁))
3735, 36syl 17 . . 3 (𝜑𝑁 ∈ (𝑀...𝑁))
38 fveq2 6229 . . . 4 (𝑛 = 𝑁 → (𝐹𝑛) = (𝐹𝑁))
3938ssiun2s 4596 . . 3 (𝑁 ∈ (𝑀...𝑁) → (𝐹𝑁) ⊆ 𝑛 ∈ (𝑀...𝑁)(𝐹𝑛))
4037, 39syl 17 . 2 (𝜑 → (𝐹𝑁) ⊆ 𝑛 ∈ (𝑀...𝑁)(𝐹𝑛))
4134, 40eqssd 3653 1 (𝜑 𝑛 ∈ (𝑀...𝑁)(𝐹𝑛) = (𝐹𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1054   = wceq 1523  wcel 2030  wral 2941  wrex 2942  wss 3607   ciun 4552  cfv 5926  (class class class)co 6690  1c1 9975   + caddc 9977  cuz 11725  ...cfz 12364  ..^cfzo 12504
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-n0 11331  df-z 11416  df-uz 11726  df-fz 12365  df-fzo 12505
This theorem is referenced by:  meaiuninclem  41015
  Copyright terms: Public domain W3C validator