MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iunin2 Structured version   Visualization version   GIF version

Theorem iunin2 4616
Description: Indexed union of intersection. Generalization of half of theorem "Distributive laws" in [Enderton] p. 30. Use uniiun 4605 to recover Enderton's theorem. (Contributed by NM, 26-Mar-2004.)
Assertion
Ref Expression
iunin2 𝑥𝐴 (𝐵𝐶) = (𝐵 𝑥𝐴 𝐶)
Distinct variable group:   𝑥,𝐵
Allowed substitution hints:   𝐴(𝑥)   𝐶(𝑥)

Proof of Theorem iunin2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 r19.42v 3121 . . . 4 (∃𝑥𝐴 (𝑦𝐵𝑦𝐶) ↔ (𝑦𝐵 ∧ ∃𝑥𝐴 𝑦𝐶))
2 elin 3829 . . . . 5 (𝑦 ∈ (𝐵𝐶) ↔ (𝑦𝐵𝑦𝐶))
32rexbii 3070 . . . 4 (∃𝑥𝐴 𝑦 ∈ (𝐵𝐶) ↔ ∃𝑥𝐴 (𝑦𝐵𝑦𝐶))
4 eliun 4556 . . . . 5 (𝑦 𝑥𝐴 𝐶 ↔ ∃𝑥𝐴 𝑦𝐶)
54anbi2i 730 . . . 4 ((𝑦𝐵𝑦 𝑥𝐴 𝐶) ↔ (𝑦𝐵 ∧ ∃𝑥𝐴 𝑦𝐶))
61, 3, 53bitr4i 292 . . 3 (∃𝑥𝐴 𝑦 ∈ (𝐵𝐶) ↔ (𝑦𝐵𝑦 𝑥𝐴 𝐶))
7 eliun 4556 . . 3 (𝑦 𝑥𝐴 (𝐵𝐶) ↔ ∃𝑥𝐴 𝑦 ∈ (𝐵𝐶))
8 elin 3829 . . 3 (𝑦 ∈ (𝐵 𝑥𝐴 𝐶) ↔ (𝑦𝐵𝑦 𝑥𝐴 𝐶))
96, 7, 83bitr4i 292 . 2 (𝑦 𝑥𝐴 (𝐵𝐶) ↔ 𝑦 ∈ (𝐵 𝑥𝐴 𝐶))
109eqriv 2648 1 𝑥𝐴 (𝐵𝐶) = (𝐵 𝑥𝐴 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wa 383   = wceq 1523  wcel 2030  wrex 2942  cin 3606   ciun 4552
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ral 2946  df-rex 2947  df-v 3233  df-in 3614  df-iun 4554
This theorem is referenced by:  iunin1  4617  2iunin  4620  resiun1OLD  5452  resiun2  5453  infssuni  8298  kmlem11  9020  cmpsublem  21250  cmpsub  21251  kgentopon  21389  metnrmlem3  22711  ovoliunlem1  23316  voliunlem1  23364  voliunlem2  23365  uniioombllem2  23397  uniioombllem4  23400  volsup2  23419  itg1addlem5  23512  itg1climres  23526  uniin2  29494  carsgclctunlem2  30509  cvmscld  31381  cnambfre  33588  ftc1anclem6  33620  heiborlem3  33742  carageniuncllem2  41057
  Copyright terms: Public domain W3C validator