MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iunin1 Structured version   Visualization version   GIF version

Theorem iunin1 4729
Description: Indexed union of intersection. Generalization of half of theorem "Distributive laws" in [Enderton] p. 30. Use uniiun 4717 to recover Enderton's theorem. (Contributed by Mario Carneiro, 30-Aug-2015.)
Assertion
Ref Expression
iunin1 𝑥𝐴 (𝐶𝐵) = ( 𝑥𝐴 𝐶𝐵)
Distinct variable group:   𝑥,𝐵
Allowed substitution hints:   𝐴(𝑥)   𝐶(𝑥)

Proof of Theorem iunin1
StepHypRef Expression
1 iunin2 4728 . 2 𝑥𝐴 (𝐵𝐶) = (𝐵 𝑥𝐴 𝐶)
2 incom 3940 . . . 4 (𝐶𝐵) = (𝐵𝐶)
32a1i 11 . . 3 (𝑥𝐴 → (𝐶𝐵) = (𝐵𝐶))
43iuneq2i 4683 . 2 𝑥𝐴 (𝐶𝐵) = 𝑥𝐴 (𝐵𝐶)
5 incom 3940 . 2 ( 𝑥𝐴 𝐶𝐵) = (𝐵 𝑥𝐴 𝐶)
61, 4, 53eqtr4i 2784 1 𝑥𝐴 (𝐶𝐵) = ( 𝑥𝐴 𝐶𝐵)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1624  wcel 2131  cin 3706   ciun 4664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1863  ax-4 1878  ax-5 1980  ax-6 2046  ax-7 2082  ax-9 2140  ax-10 2160  ax-11 2175  ax-12 2188  ax-13 2383  ax-ext 2732
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-tru 1627  df-ex 1846  df-nf 1851  df-sb 2039  df-clab 2739  df-cleq 2745  df-clel 2748  df-nfc 2883  df-ral 3047  df-rex 3048  df-v 3334  df-in 3714  df-ss 3721  df-iun 4666
This theorem is referenced by:  2iunin  4732  resiun1  5566  tgrest  21157  metnrmlem3  22857  limciun  23849  uniin1  29666  disjunsn  29706  measinblem  30584  sstotbnd2  33878  subsaliuncl  41071  sge0iunmptlemre  41127
  Copyright terms: Public domain W3C validator