![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iuneq2dv | Structured version Visualization version GIF version |
Description: Equality deduction for indexed union. (Contributed by NM, 3-Aug-2004.) |
Ref | Expression |
---|---|
iuneq2dv.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
iuneq2dv | ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iuneq2dv.1 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐶) | |
2 | 1 | ralrimiva 3096 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝐵 = 𝐶) |
3 | iuneq2 4681 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 = 𝐶 → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 𝐶) | |
4 | 2, 3 | syl 17 | 1 ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1624 ∈ wcel 2131 ∀wral 3042 ∪ ciun 4664 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1863 ax-4 1878 ax-5 1980 ax-6 2046 ax-7 2082 ax-9 2140 ax-10 2160 ax-11 2175 ax-12 2188 ax-13 2383 ax-ext 2732 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1627 df-ex 1846 df-nf 1851 df-sb 2039 df-clab 2739 df-cleq 2745 df-clel 2748 df-nfc 2883 df-ral 3047 df-rex 3048 df-v 3334 df-in 3714 df-ss 3721 df-iun 4666 |
This theorem is referenced by: iuneq12d 4690 iuneq2d 4691 fparlem3 7439 fparlem4 7440 oalim 7773 omlim 7774 oelim 7775 oelim2 7836 r1val3 8866 imasdsval 16369 acsfn 16513 tgidm 20978 cmpsub 21397 alexsublem 22041 bcth3 23320 ovoliunlem1 23462 voliunlem1 23510 uniiccdif 23538 uniioombllem2 23543 uniioombllem3a 23544 uniioombllem4 23546 itg2monolem1 23708 taylpfval 24310 ofpreima2 29767 esum2dlem 30455 eulerpartlemgu 30740 cvmscld 31554 msubvrs 31756 mblfinlem2 33752 ftc1anclem6 33795 heibor 33925 trclfvcom 38509 meaiininclem 41198 carageniuncllem2 41234 hoidmv1le 41306 hoidmvle 41312 ovnhoilem2 41314 ovnhoi 41315 ovnlecvr2 41322 ovncvr2 41323 hspmbl 41341 ovolval4lem1 41361 ovnovollem1 41368 ovnovollem2 41369 iunhoiioo 41388 vonioolem2 41393 smflimlem4 41480 smflimlem6 41482 |
Copyright terms: Public domain | W3C validator |