![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iuneq12df | Structured version Visualization version GIF version |
Description: Equality deduction for indexed union, deduction version. (Contributed by Thierry Arnoux, 31-Dec-2016.) |
Ref | Expression |
---|---|
iuneq12df.1 | ⊢ Ⅎ𝑥𝜑 |
iuneq12df.2 | ⊢ Ⅎ𝑥𝐴 |
iuneq12df.3 | ⊢ Ⅎ𝑥𝐵 |
iuneq12df.4 | ⊢ (𝜑 → 𝐴 = 𝐵) |
iuneq12df.5 | ⊢ (𝜑 → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
iuneq12df | ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑥 ∈ 𝐵 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iuneq12df.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
2 | iuneq12df.2 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
3 | iuneq12df.3 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
4 | iuneq12df.4 | . . . 4 ⊢ (𝜑 → 𝐴 = 𝐵) | |
5 | iuneq12df.5 | . . . . 5 ⊢ (𝜑 → 𝐶 = 𝐷) | |
6 | 5 | eleq2d 2835 | . . . 4 ⊢ (𝜑 → (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) |
7 | 1, 2, 3, 4, 6 | rexeqbid 3299 | . . 3 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐶 ↔ ∃𝑥 ∈ 𝐵 𝑦 ∈ 𝐷)) |
8 | 7 | alrimiv 2006 | . 2 ⊢ (𝜑 → ∀𝑦(∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐶 ↔ ∃𝑥 ∈ 𝐵 𝑦 ∈ 𝐷)) |
9 | abbi 2885 | . . 3 ⊢ (∀𝑦(∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐶 ↔ ∃𝑥 ∈ 𝐵 𝑦 ∈ 𝐷) ↔ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐶} = {𝑦 ∣ ∃𝑥 ∈ 𝐵 𝑦 ∈ 𝐷}) | |
10 | df-iun 4654 | . . . 4 ⊢ ∪ 𝑥 ∈ 𝐴 𝐶 = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐶} | |
11 | df-iun 4654 | . . . 4 ⊢ ∪ 𝑥 ∈ 𝐵 𝐷 = {𝑦 ∣ ∃𝑥 ∈ 𝐵 𝑦 ∈ 𝐷} | |
12 | 10, 11 | eqeq12i 2784 | . . 3 ⊢ (∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑥 ∈ 𝐵 𝐷 ↔ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐶} = {𝑦 ∣ ∃𝑥 ∈ 𝐵 𝑦 ∈ 𝐷}) |
13 | 9, 12 | bitr4i 267 | . 2 ⊢ (∀𝑦(∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐶 ↔ ∃𝑥 ∈ 𝐵 𝑦 ∈ 𝐷) ↔ ∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑥 ∈ 𝐵 𝐷) |
14 | 8, 13 | sylib 208 | 1 ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑥 ∈ 𝐵 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∀wal 1628 = wceq 1630 Ⅎwnf 1855 ∈ wcel 2144 {cab 2756 Ⅎwnfc 2899 ∃wrex 3061 ∪ ciun 4652 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-ext 2750 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-rex 3066 df-iun 4654 |
This theorem is referenced by: iunxdif3 4738 iundisjf 29734 aciunf1 29797 measvuni 30611 iuneq2f 34288 |
Copyright terms: Public domain | W3C validator |