Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iundisj2fi Structured version   Visualization version   GIF version

Theorem iundisj2fi 29684
 Description: A disjoint union is disjoint, finite version. Cf. iundisj2 23363. (Contributed by Thierry Arnoux, 16-Feb-2017.)
Hypotheses
Ref Expression
iundisj2fi.0 𝑛𝐵
iundisj2fi.1 (𝑛 = 𝑘𝐴 = 𝐵)
Assertion
Ref Expression
iundisj2fi Disj 𝑛 ∈ (1..^𝑁)(𝐴 𝑘 ∈ (1..^𝑛)𝐵)
Distinct variable groups:   𝑘,𝑛,𝑁   𝐴,𝑘
Allowed substitution hints:   𝐴(𝑛)   𝐵(𝑘,𝑛)

Proof of Theorem iundisj2fi
Dummy variables 𝑎 𝑏 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tru 1527 . . . 4
2 eqeq12 2664 . . . . . 6 ((𝑎 = 𝑥𝑏 = 𝑦) → (𝑎 = 𝑏𝑥 = 𝑦))
3 csbeq1 3569 . . . . . . . 8 (𝑎 = 𝑥𝑎 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) = 𝑥 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵))
4 csbeq1 3569 . . . . . . . 8 (𝑏 = 𝑦𝑏 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) = 𝑦 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵))
53, 4ineqan12d 3849 . . . . . . 7 ((𝑎 = 𝑥𝑏 = 𝑦) → (𝑎 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) ∩ 𝑏 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵)) = (𝑥 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) ∩ 𝑦 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵)))
65eqeq1d 2653 . . . . . 6 ((𝑎 = 𝑥𝑏 = 𝑦) → ((𝑎 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) ∩ 𝑏 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵)) = ∅ ↔ (𝑥 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) ∩ 𝑦 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵)) = ∅))
72, 6orbi12d 746 . . . . 5 ((𝑎 = 𝑥𝑏 = 𝑦) → ((𝑎 = 𝑏 ∨ (𝑎 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) ∩ 𝑏 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵)) = ∅) ↔ (𝑥 = 𝑦 ∨ (𝑥 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) ∩ 𝑦 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵)) = ∅)))
8 eqeq12 2664 . . . . . . 7 ((𝑎 = 𝑦𝑏 = 𝑥) → (𝑎 = 𝑏𝑦 = 𝑥))
9 equcom 1991 . . . . . . 7 (𝑦 = 𝑥𝑥 = 𝑦)
108, 9syl6bb 276 . . . . . 6 ((𝑎 = 𝑦𝑏 = 𝑥) → (𝑎 = 𝑏𝑥 = 𝑦))
11 csbeq1 3569 . . . . . . . . 9 (𝑎 = 𝑦𝑎 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) = 𝑦 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵))
12 csbeq1 3569 . . . . . . . . 9 (𝑏 = 𝑥𝑏 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) = 𝑥 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵))
1311, 12ineqan12d 3849 . . . . . . . 8 ((𝑎 = 𝑦𝑏 = 𝑥) → (𝑎 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) ∩ 𝑏 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵)) = (𝑦 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) ∩ 𝑥 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵)))
14 incom 3838 . . . . . . . 8 (𝑦 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) ∩ 𝑥 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵)) = (𝑥 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) ∩ 𝑦 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵))
1513, 14syl6eq 2701 . . . . . . 7 ((𝑎 = 𝑦𝑏 = 𝑥) → (𝑎 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) ∩ 𝑏 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵)) = (𝑥 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) ∩ 𝑦 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵)))
1615eqeq1d 2653 . . . . . 6 ((𝑎 = 𝑦𝑏 = 𝑥) → ((𝑎 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) ∩ 𝑏 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵)) = ∅ ↔ (𝑥 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) ∩ 𝑦 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵)) = ∅))
1710, 16orbi12d 746 . . . . 5 ((𝑎 = 𝑦𝑏 = 𝑥) → ((𝑎 = 𝑏 ∨ (𝑎 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) ∩ 𝑏 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵)) = ∅) ↔ (𝑥 = 𝑦 ∨ (𝑥 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) ∩ 𝑦 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵)) = ∅)))
18 fzossnn 12556 . . . . . . 7 (1..^𝑁) ⊆ ℕ
19 nnssre 11062 . . . . . . 7 ℕ ⊆ ℝ
2018, 19sstri 3645 . . . . . 6 (1..^𝑁) ⊆ ℝ
2120a1i 11 . . . . 5 (⊤ → (1..^𝑁) ⊆ ℝ)
22 biidd 252 . . . . 5 ((⊤ ∧ (𝑥 ∈ (1..^𝑁) ∧ 𝑦 ∈ (1..^𝑁))) → ((𝑥 = 𝑦 ∨ (𝑥 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) ∩ 𝑦 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵)) = ∅) ↔ (𝑥 = 𝑦 ∨ (𝑥 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) ∩ 𝑦 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵)) = ∅)))
23 nesym 2879 . . . . . . . 8 (𝑦𝑥 ↔ ¬ 𝑥 = 𝑦)
2420sseli 3632 . . . . . . . . . 10 (𝑥 ∈ (1..^𝑁) → 𝑥 ∈ ℝ)
2520sseli 3632 . . . . . . . . . 10 (𝑦 ∈ (1..^𝑁) → 𝑦 ∈ ℝ)
26 id 22 . . . . . . . . . 10 (𝑥𝑦𝑥𝑦)
27 leltne 10165 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥𝑦) → (𝑥 < 𝑦𝑦𝑥))
2824, 25, 26, 27syl3an 1408 . . . . . . . . 9 ((𝑥 ∈ (1..^𝑁) ∧ 𝑦 ∈ (1..^𝑁) ∧ 𝑥𝑦) → (𝑥 < 𝑦𝑦𝑥))
29 vex 3234 . . . . . . . . . . . . . . 15 𝑥 ∈ V
30 nfcsb1v 3582 . . . . . . . . . . . . . . . 16 𝑛𝑥 / 𝑛𝐴
31 nfcv 2793 . . . . . . . . . . . . . . . . 17 𝑛(1..^𝑥)
32 iundisj2fi.0 . . . . . . . . . . . . . . . . 17 𝑛𝐵
3331, 32nfiun 4580 . . . . . . . . . . . . . . . 16 𝑛 𝑘 ∈ (1..^𝑥)𝐵
3430, 33nfdif 3764 . . . . . . . . . . . . . . 15 𝑛(𝑥 / 𝑛𝐴 𝑘 ∈ (1..^𝑥)𝐵)
35 csbeq1a 3575 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑥𝐴 = 𝑥 / 𝑛𝐴)
36 oveq2 6698 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑥 → (1..^𝑛) = (1..^𝑥))
3736iuneq1d 4577 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑥 𝑘 ∈ (1..^𝑛)𝐵 = 𝑘 ∈ (1..^𝑥)𝐵)
3835, 37difeq12d 3762 . . . . . . . . . . . . . . 15 (𝑛 = 𝑥 → (𝐴 𝑘 ∈ (1..^𝑛)𝐵) = (𝑥 / 𝑛𝐴 𝑘 ∈ (1..^𝑥)𝐵))
3929, 34, 38csbief 3591 . . . . . . . . . . . . . 14 𝑥 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) = (𝑥 / 𝑛𝐴 𝑘 ∈ (1..^𝑥)𝐵)
40 vex 3234 . . . . . . . . . . . . . . 15 𝑦 ∈ V
41 nfcsb1v 3582 . . . . . . . . . . . . . . . 16 𝑛𝑦 / 𝑛𝐴
42 nfcv 2793 . . . . . . . . . . . . . . . . 17 𝑛(1..^𝑦)
4342, 32nfiun 4580 . . . . . . . . . . . . . . . 16 𝑛 𝑘 ∈ (1..^𝑦)𝐵
4441, 43nfdif 3764 . . . . . . . . . . . . . . 15 𝑛(𝑦 / 𝑛𝐴 𝑘 ∈ (1..^𝑦)𝐵)
45 csbeq1a 3575 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑦𝐴 = 𝑦 / 𝑛𝐴)
46 oveq2 6698 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑦 → (1..^𝑛) = (1..^𝑦))
4746iuneq1d 4577 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑦 𝑘 ∈ (1..^𝑛)𝐵 = 𝑘 ∈ (1..^𝑦)𝐵)
4845, 47difeq12d 3762 . . . . . . . . . . . . . . 15 (𝑛 = 𝑦 → (𝐴 𝑘 ∈ (1..^𝑛)𝐵) = (𝑦 / 𝑛𝐴 𝑘 ∈ (1..^𝑦)𝐵))
4940, 44, 48csbief 3591 . . . . . . . . . . . . . 14 𝑦 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) = (𝑦 / 𝑛𝐴 𝑘 ∈ (1..^𝑦)𝐵)
5039, 49ineq12i 3845 . . . . . . . . . . . . 13 (𝑥 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) ∩ 𝑦 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵)) = ((𝑥 / 𝑛𝐴 𝑘 ∈ (1..^𝑥)𝐵) ∩ (𝑦 / 𝑛𝐴 𝑘 ∈ (1..^𝑦)𝐵))
51 simp1 1081 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ (1..^𝑁) ∧ 𝑦 ∈ (1..^𝑁) ∧ 𝑥 < 𝑦) → 𝑥 ∈ (1..^𝑁))
5218, 51sseldi 3634 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ (1..^𝑁) ∧ 𝑦 ∈ (1..^𝑁) ∧ 𝑥 < 𝑦) → 𝑥 ∈ ℕ)
53 nnuz 11761 . . . . . . . . . . . . . . . . . 18 ℕ = (ℤ‘1)
5452, 53syl6eleq 2740 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ (1..^𝑁) ∧ 𝑦 ∈ (1..^𝑁) ∧ 𝑥 < 𝑦) → 𝑥 ∈ (ℤ‘1))
55 simp2 1082 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ (1..^𝑁) ∧ 𝑦 ∈ (1..^𝑁) ∧ 𝑥 < 𝑦) → 𝑦 ∈ (1..^𝑁))
5618, 55sseldi 3634 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ (1..^𝑁) ∧ 𝑦 ∈ (1..^𝑁) ∧ 𝑥 < 𝑦) → 𝑦 ∈ ℕ)
5756nnzd 11519 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ (1..^𝑁) ∧ 𝑦 ∈ (1..^𝑁) ∧ 𝑥 < 𝑦) → 𝑦 ∈ ℤ)
58 simp3 1083 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ (1..^𝑁) ∧ 𝑦 ∈ (1..^𝑁) ∧ 𝑥 < 𝑦) → 𝑥 < 𝑦)
59 elfzo2 12512 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (1..^𝑦) ↔ (𝑥 ∈ (ℤ‘1) ∧ 𝑦 ∈ ℤ ∧ 𝑥 < 𝑦))
6054, 57, 58, 59syl3anbrc 1265 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ (1..^𝑁) ∧ 𝑦 ∈ (1..^𝑁) ∧ 𝑥 < 𝑦) → 𝑥 ∈ (1..^𝑦))
61 nfcv 2793 . . . . . . . . . . . . . . . . . . . 20 𝑛𝑘
62 iundisj2fi.1 . . . . . . . . . . . . . . . . . . . 20 (𝑛 = 𝑘𝐴 = 𝐵)
6361, 32, 62csbhypf 3585 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑘𝑥 / 𝑛𝐴 = 𝐵)
6463equcoms 1993 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑥𝑥 / 𝑛𝐴 = 𝐵)
6564eqcomd 2657 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑥𝐵 = 𝑥 / 𝑛𝐴)
6665ssiun2s 4596 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (1..^𝑦) → 𝑥 / 𝑛𝐴 𝑘 ∈ (1..^𝑦)𝐵)
6760, 66syl 17 . . . . . . . . . . . . . . 15 ((𝑥 ∈ (1..^𝑁) ∧ 𝑦 ∈ (1..^𝑁) ∧ 𝑥 < 𝑦) → 𝑥 / 𝑛𝐴 𝑘 ∈ (1..^𝑦)𝐵)
6867ssdifssd 3781 . . . . . . . . . . . . . 14 ((𝑥 ∈ (1..^𝑁) ∧ 𝑦 ∈ (1..^𝑁) ∧ 𝑥 < 𝑦) → (𝑥 / 𝑛𝐴 𝑘 ∈ (1..^𝑥)𝐵) ⊆ 𝑘 ∈ (1..^𝑦)𝐵)
69 ssrin 3871 . . . . . . . . . . . . . 14 ((𝑥 / 𝑛𝐴 𝑘 ∈ (1..^𝑥)𝐵) ⊆ 𝑘 ∈ (1..^𝑦)𝐵 → ((𝑥 / 𝑛𝐴 𝑘 ∈ (1..^𝑥)𝐵) ∩ (𝑦 / 𝑛𝐴 𝑘 ∈ (1..^𝑦)𝐵)) ⊆ ( 𝑘 ∈ (1..^𝑦)𝐵 ∩ (𝑦 / 𝑛𝐴 𝑘 ∈ (1..^𝑦)𝐵)))
7068, 69syl 17 . . . . . . . . . . . . 13 ((𝑥 ∈ (1..^𝑁) ∧ 𝑦 ∈ (1..^𝑁) ∧ 𝑥 < 𝑦) → ((𝑥 / 𝑛𝐴 𝑘 ∈ (1..^𝑥)𝐵) ∩ (𝑦 / 𝑛𝐴 𝑘 ∈ (1..^𝑦)𝐵)) ⊆ ( 𝑘 ∈ (1..^𝑦)𝐵 ∩ (𝑦 / 𝑛𝐴 𝑘 ∈ (1..^𝑦)𝐵)))
7150, 70syl5eqss 3682 . . . . . . . . . . . 12 ((𝑥 ∈ (1..^𝑁) ∧ 𝑦 ∈ (1..^𝑁) ∧ 𝑥 < 𝑦) → (𝑥 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) ∩ 𝑦 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵)) ⊆ ( 𝑘 ∈ (1..^𝑦)𝐵 ∩ (𝑦 / 𝑛𝐴 𝑘 ∈ (1..^𝑦)𝐵)))
72 disjdif 4073 . . . . . . . . . . . 12 ( 𝑘 ∈ (1..^𝑦)𝐵 ∩ (𝑦 / 𝑛𝐴 𝑘 ∈ (1..^𝑦)𝐵)) = ∅
73 sseq0 4008 . . . . . . . . . . . 12 (((𝑥 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) ∩ 𝑦 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵)) ⊆ ( 𝑘 ∈ (1..^𝑦)𝐵 ∩ (𝑦 / 𝑛𝐴 𝑘 ∈ (1..^𝑦)𝐵)) ∧ ( 𝑘 ∈ (1..^𝑦)𝐵 ∩ (𝑦 / 𝑛𝐴 𝑘 ∈ (1..^𝑦)𝐵)) = ∅) → (𝑥 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) ∩ 𝑦 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵)) = ∅)
7471, 72, 73sylancl 695 . . . . . . . . . . 11 ((𝑥 ∈ (1..^𝑁) ∧ 𝑦 ∈ (1..^𝑁) ∧ 𝑥 < 𝑦) → (𝑥 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) ∩ 𝑦 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵)) = ∅)
75743expia 1286 . . . . . . . . . 10 ((𝑥 ∈ (1..^𝑁) ∧ 𝑦 ∈ (1..^𝑁)) → (𝑥 < 𝑦 → (𝑥 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) ∩ 𝑦 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵)) = ∅))
76753adant3 1101 . . . . . . . . 9 ((𝑥 ∈ (1..^𝑁) ∧ 𝑦 ∈ (1..^𝑁) ∧ 𝑥𝑦) → (𝑥 < 𝑦 → (𝑥 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) ∩ 𝑦 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵)) = ∅))
7728, 76sylbird 250 . . . . . . . 8 ((𝑥 ∈ (1..^𝑁) ∧ 𝑦 ∈ (1..^𝑁) ∧ 𝑥𝑦) → (𝑦𝑥 → (𝑥 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) ∩ 𝑦 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵)) = ∅))
7823, 77syl5bir 233 . . . . . . 7 ((𝑥 ∈ (1..^𝑁) ∧ 𝑦 ∈ (1..^𝑁) ∧ 𝑥𝑦) → (¬ 𝑥 = 𝑦 → (𝑥 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) ∩ 𝑦 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵)) = ∅))
7978orrd 392 . . . . . 6 ((𝑥 ∈ (1..^𝑁) ∧ 𝑦 ∈ (1..^𝑁) ∧ 𝑥𝑦) → (𝑥 = 𝑦 ∨ (𝑥 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) ∩ 𝑦 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵)) = ∅))
8079adantl 481 . . . . 5 ((⊤ ∧ (𝑥 ∈ (1..^𝑁) ∧ 𝑦 ∈ (1..^𝑁) ∧ 𝑥𝑦)) → (𝑥 = 𝑦 ∨ (𝑥 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) ∩ 𝑦 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵)) = ∅))
817, 17, 21, 22, 80wlogle 10599 . . . 4 ((⊤ ∧ (𝑥 ∈ (1..^𝑁) ∧ 𝑦 ∈ (1..^𝑁))) → (𝑥 = 𝑦 ∨ (𝑥 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) ∩ 𝑦 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵)) = ∅))
821, 81mpan 706 . . 3 ((𝑥 ∈ (1..^𝑁) ∧ 𝑦 ∈ (1..^𝑁)) → (𝑥 = 𝑦 ∨ (𝑥 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) ∩ 𝑦 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵)) = ∅))
8382rgen2a 3006 . 2 𝑥 ∈ (1..^𝑁)∀𝑦 ∈ (1..^𝑁)(𝑥 = 𝑦 ∨ (𝑥 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) ∩ 𝑦 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵)) = ∅)
84 disjors 4667 . 2 (Disj 𝑛 ∈ (1..^𝑁)(𝐴 𝑘 ∈ (1..^𝑛)𝐵) ↔ ∀𝑥 ∈ (1..^𝑁)∀𝑦 ∈ (1..^𝑁)(𝑥 = 𝑦 ∨ (𝑥 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) ∩ 𝑦 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵)) = ∅))
8583, 84mpbir 221 1 Disj 𝑛 ∈ (1..^𝑁)(𝐴 𝑘 ∈ (1..^𝑛)𝐵)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 196   ∨ wo 382   ∧ wa 383   ∧ w3a 1054   = wceq 1523  ⊤wtru 1524   ∈ wcel 2030  Ⅎwnfc 2780   ≠ wne 2823  ∀wral 2941  ⦋csb 3566   ∖ cdif 3604   ∩ cin 3606   ⊆ wss 3607  ∅c0 3948  ∪ ciun 4552  Disj wdisj 4652   class class class wbr 4685  ‘cfv 5926  (class class class)co 6690  ℝcr 9973  1c1 9975   < clt 10112   ≤ cle 10113  ℕcn 11058  ℤcz 11415  ℤ≥cuz 11725  ..^cfzo 12504 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-disj 4653  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-n0 11331  df-z 11416  df-uz 11726  df-fz 12365  df-fzo 12505 This theorem is referenced by:  iundisj2cnt  29686
 Copyright terms: Public domain W3C validator