MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iundisj2 Structured version   Visualization version   GIF version

Theorem iundisj2 23363
Description: A disjoint union is disjoint. (Contributed by Mario Carneiro, 4-Jul-2014.) (Revised by Mario Carneiro, 11-Dec-2016.)
Hypothesis
Ref Expression
iundisj.1 (𝑛 = 𝑘𝐴 = 𝐵)
Assertion
Ref Expression
iundisj2 Disj 𝑛 ∈ ℕ (𝐴 𝑘 ∈ (1..^𝑛)𝐵)
Distinct variable groups:   𝑘,𝑛   𝐴,𝑘   𝐵,𝑛
Allowed substitution hints:   𝐴(𝑛)   𝐵(𝑘)

Proof of Theorem iundisj2
Dummy variables 𝑎 𝑏 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tru 1527 . . . 4
2 eqeq12 2664 . . . . . 6 ((𝑎 = 𝑥𝑏 = 𝑦) → (𝑎 = 𝑏𝑥 = 𝑦))
3 csbeq1 3569 . . . . . . . 8 (𝑎 = 𝑥𝑎 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) = 𝑥 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵))
4 csbeq1 3569 . . . . . . . 8 (𝑏 = 𝑦𝑏 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) = 𝑦 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵))
53, 4ineqan12d 3849 . . . . . . 7 ((𝑎 = 𝑥𝑏 = 𝑦) → (𝑎 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) ∩ 𝑏 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵)) = (𝑥 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) ∩ 𝑦 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵)))
65eqeq1d 2653 . . . . . 6 ((𝑎 = 𝑥𝑏 = 𝑦) → ((𝑎 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) ∩ 𝑏 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵)) = ∅ ↔ (𝑥 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) ∩ 𝑦 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵)) = ∅))
72, 6orbi12d 746 . . . . 5 ((𝑎 = 𝑥𝑏 = 𝑦) → ((𝑎 = 𝑏 ∨ (𝑎 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) ∩ 𝑏 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵)) = ∅) ↔ (𝑥 = 𝑦 ∨ (𝑥 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) ∩ 𝑦 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵)) = ∅)))
8 eqeq12 2664 . . . . . . 7 ((𝑎 = 𝑦𝑏 = 𝑥) → (𝑎 = 𝑏𝑦 = 𝑥))
9 equcom 1991 . . . . . . 7 (𝑦 = 𝑥𝑥 = 𝑦)
108, 9syl6bb 276 . . . . . 6 ((𝑎 = 𝑦𝑏 = 𝑥) → (𝑎 = 𝑏𝑥 = 𝑦))
11 csbeq1 3569 . . . . . . . . 9 (𝑎 = 𝑦𝑎 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) = 𝑦 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵))
12 csbeq1 3569 . . . . . . . . 9 (𝑏 = 𝑥𝑏 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) = 𝑥 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵))
1311, 12ineqan12d 3849 . . . . . . . 8 ((𝑎 = 𝑦𝑏 = 𝑥) → (𝑎 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) ∩ 𝑏 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵)) = (𝑦 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) ∩ 𝑥 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵)))
14 incom 3838 . . . . . . . 8 (𝑦 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) ∩ 𝑥 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵)) = (𝑥 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) ∩ 𝑦 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵))
1513, 14syl6eq 2701 . . . . . . 7 ((𝑎 = 𝑦𝑏 = 𝑥) → (𝑎 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) ∩ 𝑏 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵)) = (𝑥 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) ∩ 𝑦 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵)))
1615eqeq1d 2653 . . . . . 6 ((𝑎 = 𝑦𝑏 = 𝑥) → ((𝑎 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) ∩ 𝑏 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵)) = ∅ ↔ (𝑥 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) ∩ 𝑦 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵)) = ∅))
1710, 16orbi12d 746 . . . . 5 ((𝑎 = 𝑦𝑏 = 𝑥) → ((𝑎 = 𝑏 ∨ (𝑎 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) ∩ 𝑏 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵)) = ∅) ↔ (𝑥 = 𝑦 ∨ (𝑥 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) ∩ 𝑦 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵)) = ∅)))
18 nnssre 11062 . . . . . 6 ℕ ⊆ ℝ
1918a1i 11 . . . . 5 (⊤ → ℕ ⊆ ℝ)
20 biidd 252 . . . . 5 ((⊤ ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) → ((𝑥 = 𝑦 ∨ (𝑥 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) ∩ 𝑦 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵)) = ∅) ↔ (𝑥 = 𝑦 ∨ (𝑥 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) ∩ 𝑦 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵)) = ∅)))
21 nesym 2879 . . . . . . . 8 (𝑦𝑥 ↔ ¬ 𝑥 = 𝑦)
22 nnre 11065 . . . . . . . . . 10 (𝑥 ∈ ℕ → 𝑥 ∈ ℝ)
23 nnre 11065 . . . . . . . . . 10 (𝑦 ∈ ℕ → 𝑦 ∈ ℝ)
24 id 22 . . . . . . . . . 10 (𝑥𝑦𝑥𝑦)
25 leltne 10165 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥𝑦) → (𝑥 < 𝑦𝑦𝑥))
2622, 23, 24, 25syl3an 1408 . . . . . . . . 9 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ∧ 𝑥𝑦) → (𝑥 < 𝑦𝑦𝑥))
27 vex 3234 . . . . . . . . . . . . . . 15 𝑥 ∈ V
28 nfcsb1v 3582 . . . . . . . . . . . . . . . 16 𝑛𝑥 / 𝑛𝐴
29 nfcv 2793 . . . . . . . . . . . . . . . 16 𝑛 𝑘 ∈ (1..^𝑥)𝐵
3028, 29nfdif 3764 . . . . . . . . . . . . . . 15 𝑛(𝑥 / 𝑛𝐴 𝑘 ∈ (1..^𝑥)𝐵)
31 csbeq1a 3575 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑥𝐴 = 𝑥 / 𝑛𝐴)
32 oveq2 6698 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑥 → (1..^𝑛) = (1..^𝑥))
3332iuneq1d 4577 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑥 𝑘 ∈ (1..^𝑛)𝐵 = 𝑘 ∈ (1..^𝑥)𝐵)
3431, 33difeq12d 3762 . . . . . . . . . . . . . . 15 (𝑛 = 𝑥 → (𝐴 𝑘 ∈ (1..^𝑛)𝐵) = (𝑥 / 𝑛𝐴 𝑘 ∈ (1..^𝑥)𝐵))
3527, 30, 34csbief 3591 . . . . . . . . . . . . . 14 𝑥 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) = (𝑥 / 𝑛𝐴 𝑘 ∈ (1..^𝑥)𝐵)
36 vex 3234 . . . . . . . . . . . . . . 15 𝑦 ∈ V
37 nfcsb1v 3582 . . . . . . . . . . . . . . . 16 𝑛𝑦 / 𝑛𝐴
38 nfcv 2793 . . . . . . . . . . . . . . . 16 𝑛 𝑘 ∈ (1..^𝑦)𝐵
3937, 38nfdif 3764 . . . . . . . . . . . . . . 15 𝑛(𝑦 / 𝑛𝐴 𝑘 ∈ (1..^𝑦)𝐵)
40 csbeq1a 3575 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑦𝐴 = 𝑦 / 𝑛𝐴)
41 oveq2 6698 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑦 → (1..^𝑛) = (1..^𝑦))
4241iuneq1d 4577 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑦 𝑘 ∈ (1..^𝑛)𝐵 = 𝑘 ∈ (1..^𝑦)𝐵)
4340, 42difeq12d 3762 . . . . . . . . . . . . . . 15 (𝑛 = 𝑦 → (𝐴 𝑘 ∈ (1..^𝑛)𝐵) = (𝑦 / 𝑛𝐴 𝑘 ∈ (1..^𝑦)𝐵))
4436, 39, 43csbief 3591 . . . . . . . . . . . . . 14 𝑦 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) = (𝑦 / 𝑛𝐴 𝑘 ∈ (1..^𝑦)𝐵)
4535, 44ineq12i 3845 . . . . . . . . . . . . 13 (𝑥 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) ∩ 𝑦 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵)) = ((𝑥 / 𝑛𝐴 𝑘 ∈ (1..^𝑥)𝐵) ∩ (𝑦 / 𝑛𝐴 𝑘 ∈ (1..^𝑦)𝐵))
46 simp1 1081 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ∧ 𝑥 < 𝑦) → 𝑥 ∈ ℕ)
47 nnuz 11761 . . . . . . . . . . . . . . . . . 18 ℕ = (ℤ‘1)
4846, 47syl6eleq 2740 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ∧ 𝑥 < 𝑦) → 𝑥 ∈ (ℤ‘1))
49 simp2 1082 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ∧ 𝑥 < 𝑦) → 𝑦 ∈ ℕ)
5049nnzd 11519 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ∧ 𝑥 < 𝑦) → 𝑦 ∈ ℤ)
51 simp3 1083 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ∧ 𝑥 < 𝑦) → 𝑥 < 𝑦)
52 elfzo2 12512 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (1..^𝑦) ↔ (𝑥 ∈ (ℤ‘1) ∧ 𝑦 ∈ ℤ ∧ 𝑥 < 𝑦))
5348, 50, 51, 52syl3anbrc 1265 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ∧ 𝑥 < 𝑦) → 𝑥 ∈ (1..^𝑦))
54 nfcv 2793 . . . . . . . . . . . . . . . . . . . 20 𝑛𝑘
55 nfcv 2793 . . . . . . . . . . . . . . . . . . . 20 𝑛𝐵
56 iundisj.1 . . . . . . . . . . . . . . . . . . . 20 (𝑛 = 𝑘𝐴 = 𝐵)
5754, 55, 56csbhypf 3585 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑘𝑥 / 𝑛𝐴 = 𝐵)
5857equcoms 1993 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑥𝑥 / 𝑛𝐴 = 𝐵)
5958eqcomd 2657 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑥𝐵 = 𝑥 / 𝑛𝐴)
6059ssiun2s 4596 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (1..^𝑦) → 𝑥 / 𝑛𝐴 𝑘 ∈ (1..^𝑦)𝐵)
6153, 60syl 17 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ∧ 𝑥 < 𝑦) → 𝑥 / 𝑛𝐴 𝑘 ∈ (1..^𝑦)𝐵)
6261ssdifssd 3781 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ∧ 𝑥 < 𝑦) → (𝑥 / 𝑛𝐴 𝑘 ∈ (1..^𝑥)𝐵) ⊆ 𝑘 ∈ (1..^𝑦)𝐵)
63 ssrin 3871 . . . . . . . . . . . . . 14 ((𝑥 / 𝑛𝐴 𝑘 ∈ (1..^𝑥)𝐵) ⊆ 𝑘 ∈ (1..^𝑦)𝐵 → ((𝑥 / 𝑛𝐴 𝑘 ∈ (1..^𝑥)𝐵) ∩ (𝑦 / 𝑛𝐴 𝑘 ∈ (1..^𝑦)𝐵)) ⊆ ( 𝑘 ∈ (1..^𝑦)𝐵 ∩ (𝑦 / 𝑛𝐴 𝑘 ∈ (1..^𝑦)𝐵)))
6462, 63syl 17 . . . . . . . . . . . . 13 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ∧ 𝑥 < 𝑦) → ((𝑥 / 𝑛𝐴 𝑘 ∈ (1..^𝑥)𝐵) ∩ (𝑦 / 𝑛𝐴 𝑘 ∈ (1..^𝑦)𝐵)) ⊆ ( 𝑘 ∈ (1..^𝑦)𝐵 ∩ (𝑦 / 𝑛𝐴 𝑘 ∈ (1..^𝑦)𝐵)))
6545, 64syl5eqss 3682 . . . . . . . . . . . 12 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ∧ 𝑥 < 𝑦) → (𝑥 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) ∩ 𝑦 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵)) ⊆ ( 𝑘 ∈ (1..^𝑦)𝐵 ∩ (𝑦 / 𝑛𝐴 𝑘 ∈ (1..^𝑦)𝐵)))
66 disjdif 4073 . . . . . . . . . . . 12 ( 𝑘 ∈ (1..^𝑦)𝐵 ∩ (𝑦 / 𝑛𝐴 𝑘 ∈ (1..^𝑦)𝐵)) = ∅
67 sseq0 4008 . . . . . . . . . . . 12 (((𝑥 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) ∩ 𝑦 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵)) ⊆ ( 𝑘 ∈ (1..^𝑦)𝐵 ∩ (𝑦 / 𝑛𝐴 𝑘 ∈ (1..^𝑦)𝐵)) ∧ ( 𝑘 ∈ (1..^𝑦)𝐵 ∩ (𝑦 / 𝑛𝐴 𝑘 ∈ (1..^𝑦)𝐵)) = ∅) → (𝑥 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) ∩ 𝑦 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵)) = ∅)
6865, 66, 67sylancl 695 . . . . . . . . . . 11 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ∧ 𝑥 < 𝑦) → (𝑥 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) ∩ 𝑦 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵)) = ∅)
69683expia 1286 . . . . . . . . . 10 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (𝑥 < 𝑦 → (𝑥 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) ∩ 𝑦 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵)) = ∅))
70693adant3 1101 . . . . . . . . 9 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ∧ 𝑥𝑦) → (𝑥 < 𝑦 → (𝑥 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) ∩ 𝑦 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵)) = ∅))
7126, 70sylbird 250 . . . . . . . 8 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ∧ 𝑥𝑦) → (𝑦𝑥 → (𝑥 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) ∩ 𝑦 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵)) = ∅))
7221, 71syl5bir 233 . . . . . . 7 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ∧ 𝑥𝑦) → (¬ 𝑥 = 𝑦 → (𝑥 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) ∩ 𝑦 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵)) = ∅))
7372orrd 392 . . . . . 6 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ∧ 𝑥𝑦) → (𝑥 = 𝑦 ∨ (𝑥 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) ∩ 𝑦 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵)) = ∅))
7473adantl 481 . . . . 5 ((⊤ ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ∧ 𝑥𝑦)) → (𝑥 = 𝑦 ∨ (𝑥 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) ∩ 𝑦 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵)) = ∅))
757, 17, 19, 20, 74wlogle 10599 . . . 4 ((⊤ ∧ (𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ)) → (𝑥 = 𝑦 ∨ (𝑥 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) ∩ 𝑦 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵)) = ∅))
761, 75mpan 706 . . 3 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (𝑥 = 𝑦 ∨ (𝑥 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) ∩ 𝑦 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵)) = ∅))
7776rgen2a 3006 . 2 𝑥 ∈ ℕ ∀𝑦 ∈ ℕ (𝑥 = 𝑦 ∨ (𝑥 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) ∩ 𝑦 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵)) = ∅)
78 disjors 4667 . 2 (Disj 𝑛 ∈ ℕ (𝐴 𝑘 ∈ (1..^𝑛)𝐵) ↔ ∀𝑥 ∈ ℕ ∀𝑦 ∈ ℕ (𝑥 = 𝑦 ∨ (𝑥 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵) ∩ 𝑦 / 𝑛(𝐴 𝑘 ∈ (1..^𝑛)𝐵)) = ∅))
7977, 78mpbir 221 1 Disj 𝑛 ∈ ℕ (𝐴 𝑘 ∈ (1..^𝑛)𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 382  wa 383  w3a 1054   = wceq 1523  wtru 1524  wcel 2030  wne 2823  wral 2941  csb 3566  cdif 3604  cin 3606  wss 3607  c0 3948   ciun 4552  Disj wdisj 4652   class class class wbr 4685  cfv 5926  (class class class)co 6690  cr 9973  1c1 9975   < clt 10112  cle 10113  cn 11058  cz 11415  cuz 11725  ..^cfzo 12504
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-disj 4653  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-n0 11331  df-z 11416  df-uz 11726  df-fz 12365  df-fzo 12505
This theorem is referenced by:  iunmbl  23367  volsup  23370  sigapildsys  30353  carsgclctunlem3  30510  voliunnfl  33583
  Copyright terms: Public domain W3C validator