Mathbox for Alan Sare < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iunconnlem2 Structured version   Visualization version   GIF version

Theorem iunconnlem2 39485
 Description: The indexed union of connected overlapping subspaces sharing a common point is connected. This proof was automatically derived by completeusersproof from its Virtual Deduction proof counterpart http://us.metamath.org/other/completeusersproof/iunconlem2vd.html. As it is verified by the Metamath program, iunconnlem2 39485 verifies http://us.metamath.org/other/completeusersproof/iunconlem2vd.html. (Contributed by Alan Sare, 22-Apr-2018.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
iunconnlem2.1 (𝜓 ↔ ((((((𝜑𝑢𝐽) ∧ 𝑣𝐽) ∧ (𝑢 𝑘𝐴 𝐵) ≠ ∅) ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅) ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵)) ∧ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)))
iunconnlem2.2 (𝜑𝐽 ∈ (TopOn‘𝑋))
iunconnlem2.3 ((𝜑𝑘𝐴) → 𝐵𝑋)
iunconnlem2.4 ((𝜑𝑘𝐴) → 𝑃𝐵)
iunconnlem2.5 ((𝜑𝑘𝐴) → (𝐽t 𝐵) ∈ Conn)
Assertion
Ref Expression
iunconnlem2 (𝜑 → (𝐽t 𝑘𝐴 𝐵) ∈ Conn)
Distinct variable groups:   𝑢,𝑘,𝑣,𝜑   𝐴,𝑘,𝑢,𝑣   𝑢,𝐵,𝑣   𝑘,𝐽,𝑢,𝑣   𝑃,𝑘   𝑘,𝑋,𝑢,𝑣
Allowed substitution hints:   𝜓(𝑣,𝑢,𝑘)   𝐵(𝑘)   𝑃(𝑣,𝑢)

Proof of Theorem iunconnlem2
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 iunconnlem2.2 . 2 (𝜑𝐽 ∈ (TopOn‘𝑋))
2 iunconnlem2.3 . . . . 5 ((𝜑𝑘𝐴) → 𝐵𝑋)
32ex 449 . . . 4 (𝜑 → (𝑘𝐴𝐵𝑋))
43ralrimiv 2994 . . 3 (𝜑 → ∀𝑘𝐴 𝐵𝑋)
5 iunss 4593 . . . 4 ( 𝑘𝐴 𝐵𝑋 ↔ ∀𝑘𝐴 𝐵𝑋)
65biimpri 218 . . 3 (∀𝑘𝐴 𝐵𝑋 𝑘𝐴 𝐵𝑋)
74, 6syl 17 . 2 (𝜑 𝑘𝐴 𝐵𝑋)
8 iunconnlem2.1 . . . . . . . . . . . 12 (𝜓 ↔ ((((((𝜑𝑢𝐽) ∧ 𝑣𝐽) ∧ (𝑢 𝑘𝐴 𝐵) ≠ ∅) ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅) ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵)) ∧ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)))
98biimpi 206 . . . . . . . . . . . . . . 15 (𝜓 → ((((((𝜑𝑢𝐽) ∧ 𝑣𝐽) ∧ (𝑢 𝑘𝐴 𝐵) ≠ ∅) ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅) ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵)) ∧ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)))
109simprd 478 . . . . . . . . . . . . . 14 (𝜓 𝑘𝐴 𝐵 ⊆ (𝑢𝑣))
11 simp-4r 824 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑𝑢𝐽) ∧ 𝑣𝐽) ∧ (𝑢 𝑘𝐴 𝐵) ≠ ∅) ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅) ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵)) ∧ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)) → (𝑢 𝑘𝐴 𝐵) ≠ ∅)
129, 11syl 17 . . . . . . . . . . . . . . . . . 18 (𝜓 → (𝑢 𝑘𝐴 𝐵) ≠ ∅)
13 n0 3964 . . . . . . . . . . . . . . . . . . 19 ((𝑢 𝑘𝐴 𝐵) ≠ ∅ ↔ ∃𝑤 𝑤 ∈ (𝑢 𝑘𝐴 𝐵))
1413biimpi 206 . . . . . . . . . . . . . . . . . 18 ((𝑢 𝑘𝐴 𝐵) ≠ ∅ → ∃𝑤 𝑤 ∈ (𝑢 𝑘𝐴 𝐵))
1512, 14syl 17 . . . . . . . . . . . . . . . . 17 (𝜓 → ∃𝑤 𝑤 ∈ (𝑢 𝑘𝐴 𝐵))
16 inss2 3867 . . . . . . . . . . . . . . . . . . . . 21 (𝑢 𝑘𝐴 𝐵) ⊆ 𝑘𝐴 𝐵
17 id 22 . . . . . . . . . . . . . . . . . . . . 21 (𝑤 ∈ (𝑢 𝑘𝐴 𝐵) → 𝑤 ∈ (𝑢 𝑘𝐴 𝐵))
1816, 17sseldi 3634 . . . . . . . . . . . . . . . . . . . 20 (𝑤 ∈ (𝑢 𝑘𝐴 𝐵) → 𝑤 𝑘𝐴 𝐵)
19 eliun 4556 . . . . . . . . . . . . . . . . . . . . 21 (𝑤 𝑘𝐴 𝐵 ↔ ∃𝑘𝐴 𝑤𝐵)
2019biimpi 206 . . . . . . . . . . . . . . . . . . . 20 (𝑤 𝑘𝐴 𝐵 → ∃𝑘𝐴 𝑤𝐵)
2118, 20syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑤 ∈ (𝑢 𝑘𝐴 𝐵) → ∃𝑘𝐴 𝑤𝐵)
22 rexn0 4107 . . . . . . . . . . . . . . . . . . 19 (∃𝑘𝐴 𝑤𝐵𝐴 ≠ ∅)
2321, 22syl 17 . . . . . . . . . . . . . . . . . 18 (𝑤 ∈ (𝑢 𝑘𝐴 𝐵) → 𝐴 ≠ ∅)
2423exlimiv 1898 . . . . . . . . . . . . . . . . 17 (∃𝑤 𝑤 ∈ (𝑢 𝑘𝐴 𝐵) → 𝐴 ≠ ∅)
2515, 24syl 17 . . . . . . . . . . . . . . . 16 (𝜓𝐴 ≠ ∅)
26 nfv 1883 . . . . . . . . . . . . . . . . . . . . . . 23 𝑘(𝜑𝑢𝐽)
27 nfv 1883 . . . . . . . . . . . . . . . . . . . . . . 23 𝑘 𝑣𝐽
2826, 27nfan 1868 . . . . . . . . . . . . . . . . . . . . . 22 𝑘((𝜑𝑢𝐽) ∧ 𝑣𝐽)
29 nfcv 2793 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑘𝑢
30 nfiu1 4582 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑘 𝑘𝐴 𝐵
3129, 30nfin 3853 . . . . . . . . . . . . . . . . . . . . . . 23 𝑘(𝑢 𝑘𝐴 𝐵)
32 nfcv 2793 . . . . . . . . . . . . . . . . . . . . . . 23 𝑘
3331, 32nfne 2923 . . . . . . . . . . . . . . . . . . . . . 22 𝑘(𝑢 𝑘𝐴 𝐵) ≠ ∅
3428, 33nfan 1868 . . . . . . . . . . . . . . . . . . . . 21 𝑘(((𝜑𝑢𝐽) ∧ 𝑣𝐽) ∧ (𝑢 𝑘𝐴 𝐵) ≠ ∅)
35 nfcv 2793 . . . . . . . . . . . . . . . . . . . . . . 23 𝑘𝑣
3635, 30nfin 3853 . . . . . . . . . . . . . . . . . . . . . 22 𝑘(𝑣 𝑘𝐴 𝐵)
3736, 32nfne 2923 . . . . . . . . . . . . . . . . . . . . 21 𝑘(𝑣 𝑘𝐴 𝐵) ≠ ∅
3834, 37nfan 1868 . . . . . . . . . . . . . . . . . . . 20 𝑘((((𝜑𝑢𝐽) ∧ 𝑣𝐽) ∧ (𝑢 𝑘𝐴 𝐵) ≠ ∅) ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅)
39 nfcv 2793 . . . . . . . . . . . . . . . . . . . . 21 𝑘(𝑢𝑣)
40 nfcv 2793 . . . . . . . . . . . . . . . . . . . . . 22 𝑘𝑋
4140, 30nfdif 3764 . . . . . . . . . . . . . . . . . . . . 21 𝑘(𝑋 𝑘𝐴 𝐵)
4239, 41nfss 3629 . . . . . . . . . . . . . . . . . . . 20 𝑘(𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵)
4338, 42nfan 1868 . . . . . . . . . . . . . . . . . . 19 𝑘(((((𝜑𝑢𝐽) ∧ 𝑣𝐽) ∧ (𝑢 𝑘𝐴 𝐵) ≠ ∅) ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅) ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵))
44 nfcv 2793 . . . . . . . . . . . . . . . . . . . 20 𝑘(𝑢𝑣)
4530, 44nfss 3629 . . . . . . . . . . . . . . . . . . 19 𝑘 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)
4643, 45nfan 1868 . . . . . . . . . . . . . . . . . 18 𝑘((((((𝜑𝑢𝐽) ∧ 𝑣𝐽) ∧ (𝑢 𝑘𝐴 𝐵) ≠ ∅) ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅) ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵)) ∧ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣))
478nfbii 1818 . . . . . . . . . . . . . . . . . 18 (Ⅎ𝑘𝜓 ↔ Ⅎ𝑘((((((𝜑𝑢𝐽) ∧ 𝑣𝐽) ∧ (𝑢 𝑘𝐴 𝐵) ≠ ∅) ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅) ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵)) ∧ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)))
4846, 47mpbir 221 . . . . . . . . . . . . . . . . 17 𝑘𝜓
49 simp-6l 827 . . . . . . . . . . . . . . . . . . . 20 (((((((𝜑𝑢𝐽) ∧ 𝑣𝐽) ∧ (𝑢 𝑘𝐴 𝐵) ≠ ∅) ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅) ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵)) ∧ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)) → 𝜑)
509, 49syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜓𝜑)
51 iunconnlem2.4 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘𝐴) → 𝑃𝐵)
5250, 51sylan 487 . . . . . . . . . . . . . . . . . 18 ((𝜓𝑘𝐴) → 𝑃𝐵)
5352ex 449 . . . . . . . . . . . . . . . . 17 (𝜓 → (𝑘𝐴𝑃𝐵))
5448, 53ralrimi 2986 . . . . . . . . . . . . . . . 16 (𝜓 → ∀𝑘𝐴 𝑃𝐵)
55 r19.2z 4093 . . . . . . . . . . . . . . . . . 18 ((𝐴 ≠ ∅ ∧ ∀𝑘𝐴 𝑃𝐵) → ∃𝑘𝐴 𝑃𝐵)
5655ancoms 468 . . . . . . . . . . . . . . . . 17 ((∀𝑘𝐴 𝑃𝐵𝐴 ≠ ∅) → ∃𝑘𝐴 𝑃𝐵)
5756ancoms 468 . . . . . . . . . . . . . . . 16 ((𝐴 ≠ ∅ ∧ ∀𝑘𝐴 𝑃𝐵) → ∃𝑘𝐴 𝑃𝐵)
5825, 54, 57syl2anc 694 . . . . . . . . . . . . . . 15 (𝜓 → ∃𝑘𝐴 𝑃𝐵)
59 eliun 4556 . . . . . . . . . . . . . . . 16 (𝑃 𝑘𝐴 𝐵 ↔ ∃𝑘𝐴 𝑃𝐵)
6059biimpri 218 . . . . . . . . . . . . . . 15 (∃𝑘𝐴 𝑃𝐵𝑃 𝑘𝐴 𝐵)
6158, 60syl 17 . . . . . . . . . . . . . 14 (𝜓𝑃 𝑘𝐴 𝐵)
6210, 61sseldd 3637 . . . . . . . . . . . . 13 (𝜓𝑃 ∈ (𝑢𝑣))
63 elun 3786 . . . . . . . . . . . . . 14 (𝑃 ∈ (𝑢𝑣) ↔ (𝑃𝑢𝑃𝑣))
6463biimpi 206 . . . . . . . . . . . . 13 (𝑃 ∈ (𝑢𝑣) → (𝑃𝑢𝑃𝑣))
6562, 64syl 17 . . . . . . . . . . . 12 (𝜓 → (𝑃𝑢𝑃𝑣))
668, 65sylbir 225 . . . . . . . . . . 11 (((((((𝜑𝑢𝐽) ∧ 𝑣𝐽) ∧ (𝑢 𝑘𝐴 𝐵) ≠ ∅) ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅) ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵)) ∧ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)) → (𝑃𝑢𝑃𝑣))
6750, 1syl 17 . . . . . . . . . . . . . 14 (𝜓𝐽 ∈ (TopOn‘𝑋))
6850, 2sylan 487 . . . . . . . . . . . . . 14 ((𝜓𝑘𝐴) → 𝐵𝑋)
69 iunconnlem2.5 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝐴) → (𝐽t 𝐵) ∈ Conn)
7050, 69sylan 487 . . . . . . . . . . . . . 14 ((𝜓𝑘𝐴) → (𝐽t 𝐵) ∈ Conn)
71 simp-6r 828 . . . . . . . . . . . . . . 15 (((((((𝜑𝑢𝐽) ∧ 𝑣𝐽) ∧ (𝑢 𝑘𝐴 𝐵) ≠ ∅) ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅) ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵)) ∧ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)) → 𝑢𝐽)
729, 71syl 17 . . . . . . . . . . . . . 14 (𝜓𝑢𝐽)
73 simp-5r 826 . . . . . . . . . . . . . . 15 (((((((𝜑𝑢𝐽) ∧ 𝑣𝐽) ∧ (𝑢 𝑘𝐴 𝐵) ≠ ∅) ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅) ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵)) ∧ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)) → 𝑣𝐽)
749, 73syl 17 . . . . . . . . . . . . . 14 (𝜓𝑣𝐽)
75 simpllr 815 . . . . . . . . . . . . . . 15 (((((((𝜑𝑢𝐽) ∧ 𝑣𝐽) ∧ (𝑢 𝑘𝐴 𝐵) ≠ ∅) ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅) ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵)) ∧ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)) → (𝑣 𝑘𝐴 𝐵) ≠ ∅)
769, 75syl 17 . . . . . . . . . . . . . 14 (𝜓 → (𝑣 𝑘𝐴 𝐵) ≠ ∅)
77 simplr 807 . . . . . . . . . . . . . . 15 (((((((𝜑𝑢𝐽) ∧ 𝑣𝐽) ∧ (𝑢 𝑘𝐴 𝐵) ≠ ∅) ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅) ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵)) ∧ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)) → (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵))
789, 77syl 17 . . . . . . . . . . . . . 14 (𝜓 → (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵))
7967, 68, 52, 70, 72, 74, 76, 78, 10, 48iunconnlem 21278 . . . . . . . . . . . . 13 (𝜓 → ¬ 𝑃𝑢)
80 incom 3838 . . . . . . . . . . . . . . 15 (𝑣𝑢) = (𝑢𝑣)
8180, 78syl5eqss 3682 . . . . . . . . . . . . . 14 (𝜓 → (𝑣𝑢) ⊆ (𝑋 𝑘𝐴 𝐵))
82 uncom 3790 . . . . . . . . . . . . . . 15 (𝑣𝑢) = (𝑢𝑣)
8310, 82syl6sseqr 3685 . . . . . . . . . . . . . 14 (𝜓 𝑘𝐴 𝐵 ⊆ (𝑣𝑢))
8467, 68, 52, 70, 74, 72, 12, 81, 83, 48iunconnlem 21278 . . . . . . . . . . . . 13 (𝜓 → ¬ 𝑃𝑣)
85 pm4.56 515 . . . . . . . . . . . . . . 15 ((¬ 𝑃𝑢 ∧ ¬ 𝑃𝑣) ↔ ¬ (𝑃𝑢𝑃𝑣))
8685biimpi 206 . . . . . . . . . . . . . 14 ((¬ 𝑃𝑢 ∧ ¬ 𝑃𝑣) → ¬ (𝑃𝑢𝑃𝑣))
8786idiALT 39000 . . . . . . . . . . . . 13 ((¬ 𝑃𝑢 ∧ ¬ 𝑃𝑣) → ¬ (𝑃𝑢𝑃𝑣))
8879, 84, 87syl2anc 694 . . . . . . . . . . . 12 (𝜓 → ¬ (𝑃𝑢𝑃𝑣))
898, 88sylbir 225 . . . . . . . . . . 11 (((((((𝜑𝑢𝐽) ∧ 𝑣𝐽) ∧ (𝑢 𝑘𝐴 𝐵) ≠ ∅) ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅) ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵)) ∧ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)) → ¬ (𝑃𝑢𝑃𝑣))
9066, 89pm2.65da 599 . . . . . . . . . 10 ((((((𝜑𝑢𝐽) ∧ 𝑣𝐽) ∧ (𝑢 𝑘𝐴 𝐵) ≠ ∅) ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅) ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵)) → ¬ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣))
9190ex 449 . . . . . . . . 9 (((((𝜑𝑢𝐽) ∧ 𝑣𝐽) ∧ (𝑢 𝑘𝐴 𝐵) ≠ ∅) ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅) → ((𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵) → ¬ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)))
9291ex 449 . . . . . . . 8 ((((𝜑𝑢𝐽) ∧ 𝑣𝐽) ∧ (𝑢 𝑘𝐴 𝐵) ≠ ∅) → ((𝑣 𝑘𝐴 𝐵) ≠ ∅ → ((𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵) → ¬ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣))))
9392ex3 1282 . . . . . . 7 ((𝜑𝑢𝐽𝑣𝐽) → ((𝑢 𝑘𝐴 𝐵) ≠ ∅ → ((𝑣 𝑘𝐴 𝐵) ≠ ∅ → ((𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵) → ¬ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)))))
94933impd 1303 . . . . . 6 ((𝜑𝑢𝐽𝑣𝐽) → (((𝑢 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵)) → ¬ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)))
95943expia 1286 . . . . 5 ((𝜑𝑢𝐽) → (𝑣𝐽 → (((𝑢 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵)) → ¬ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣))))
9695ex 449 . . . 4 (𝜑 → (𝑢𝐽 → (𝑣𝐽 → (((𝑢 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵)) → ¬ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)))))
9796impd 446 . . 3 (𝜑 → ((𝑢𝐽𝑣𝐽) → (((𝑢 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵)) → ¬ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣))))
9897ralrimivv 2999 . 2 (𝜑 → ∀𝑢𝐽𝑣𝐽 (((𝑢 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵)) → ¬ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣)))
99 connsub 21272 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑘𝐴 𝐵𝑋) → ((𝐽t 𝑘𝐴 𝐵) ∈ Conn ↔ ∀𝑢𝐽𝑣𝐽 (((𝑢 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵)) → ¬ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣))))
10099biimp3ar 1473 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑘𝐴 𝐵𝑋 ∧ ∀𝑢𝐽𝑣𝐽 (((𝑢 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑣 𝑘𝐴 𝐵) ≠ ∅ ∧ (𝑢𝑣) ⊆ (𝑋 𝑘𝐴 𝐵)) → ¬ 𝑘𝐴 𝐵 ⊆ (𝑢𝑣))) → (𝐽t 𝑘𝐴 𝐵) ∈ Conn)
1011, 7, 98, 100syl3anc 1366 1 (𝜑 → (𝐽t 𝑘𝐴 𝐵) ∈ Conn)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 196   ∨ wo 382   ∧ wa 383   ∧ w3a 1054  ∃wex 1744  Ⅎwnf 1748   ∈ wcel 2030   ≠ wne 2823  ∀wral 2941  ∃wrex 2942   ∖ cdif 3604   ∪ cun 3605   ∩ cin 3606   ⊆ wss 3607  ∅c0 3948  ∪ ciun 4552  ‘cfv 5926  (class class class)co 6690   ↾t crest 16128  TopOnctopon 20763  Conncconn 21262 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-oadd 7609  df-er 7787  df-en 7998  df-fin 8001  df-fi 8358  df-rest 16130  df-topgen 16151  df-top 20747  df-topon 20764  df-bases 20798  df-cld 20871  df-conn 21263 This theorem is referenced by:  iunconnALT  39486
 Copyright terms: Public domain W3C validator