![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iunab | Structured version Visualization version GIF version |
Description: The indexed union of a class abstraction. (Contributed by NM, 27-Dec-2004.) |
Ref | Expression |
---|---|
iunab | ⊢ ∪ 𝑥 ∈ 𝐴 {𝑦 ∣ 𝜑} = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝜑} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2793 | . . . 4 ⊢ Ⅎ𝑦𝐴 | |
2 | nfab1 2795 | . . . 4 ⊢ Ⅎ𝑦{𝑦 ∣ 𝜑} | |
3 | 1, 2 | nfiun 4580 | . . 3 ⊢ Ⅎ𝑦∪ 𝑥 ∈ 𝐴 {𝑦 ∣ 𝜑} |
4 | nfab1 2795 | . . 3 ⊢ Ⅎ𝑦{𝑦 ∣ ∃𝑥 ∈ 𝐴 𝜑} | |
5 | 3, 4 | cleqf 2819 | . 2 ⊢ (∪ 𝑥 ∈ 𝐴 {𝑦 ∣ 𝜑} = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝜑} ↔ ∀𝑦(𝑦 ∈ ∪ 𝑥 ∈ 𝐴 {𝑦 ∣ 𝜑} ↔ 𝑦 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝜑})) |
6 | abid 2639 | . . . 4 ⊢ (𝑦 ∈ {𝑦 ∣ 𝜑} ↔ 𝜑) | |
7 | 6 | rexbii 3070 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝑦 ∈ {𝑦 ∣ 𝜑} ↔ ∃𝑥 ∈ 𝐴 𝜑) |
8 | eliun 4556 | . . 3 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 {𝑦 ∣ 𝜑} ↔ ∃𝑥 ∈ 𝐴 𝑦 ∈ {𝑦 ∣ 𝜑}) | |
9 | abid 2639 | . . 3 ⊢ (𝑦 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝜑} ↔ ∃𝑥 ∈ 𝐴 𝜑) | |
10 | 7, 8, 9 | 3bitr4i 292 | . 2 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 {𝑦 ∣ 𝜑} ↔ 𝑦 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝜑}) |
11 | 5, 10 | mpgbir 1766 | 1 ⊢ ∪ 𝑥 ∈ 𝐴 {𝑦 ∣ 𝜑} = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝜑} |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 = wceq 1523 ∈ wcel 2030 {cab 2637 ∃wrex 2942 ∪ ciun 4552 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ral 2946 df-rex 2947 df-v 3233 df-iun 4554 |
This theorem is referenced by: iunrab 4599 iunid 4607 dfimafn2 6285 rabiun 33512 dfaimafn2 41567 rnfdmpr 41623 |
Copyright terms: Public domain | W3C validator |