MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itunifval Structured version   Visualization version   GIF version

Theorem itunifval 9198
Description: Function value of iterated unions. EDITORIAL: The iterated unions and order types of ordered sets are split out here because they could conceivably be independently useful. (Contributed by Stefan O'Rear, 11-Feb-2015.)
Hypothesis
Ref Expression
ituni.u 𝑈 = (𝑥 ∈ V ↦ (rec((𝑦 ∈ V ↦ 𝑦), 𝑥) ↾ ω))
Assertion
Ref Expression
itunifval (𝐴𝑉 → (𝑈𝐴) = (rec((𝑦 ∈ V ↦ 𝑦), 𝐴) ↾ ω))
Distinct variable group:   𝑥,𝐴,𝑦
Allowed substitution hints:   𝑈(𝑥,𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem itunifval
StepHypRef Expression
1 elex 3202 . 2 (𝐴𝑉𝐴 ∈ V)
2 rdgeq2 7468 . . . 4 (𝑥 = 𝐴 → rec((𝑦 ∈ V ↦ 𝑦), 𝑥) = rec((𝑦 ∈ V ↦ 𝑦), 𝐴))
32reseq1d 5365 . . 3 (𝑥 = 𝐴 → (rec((𝑦 ∈ V ↦ 𝑦), 𝑥) ↾ ω) = (rec((𝑦 ∈ V ↦ 𝑦), 𝐴) ↾ ω))
4 ituni.u . . 3 𝑈 = (𝑥 ∈ V ↦ (rec((𝑦 ∈ V ↦ 𝑦), 𝑥) ↾ ω))
5 rdgfun 7472 . . . 4 Fun rec((𝑦 ∈ V ↦ 𝑦), 𝐴)
6 omex 8500 . . . 4 ω ∈ V
7 resfunexg 6444 . . . 4 ((Fun rec((𝑦 ∈ V ↦ 𝑦), 𝐴) ∧ ω ∈ V) → (rec((𝑦 ∈ V ↦ 𝑦), 𝐴) ↾ ω) ∈ V)
85, 6, 7mp2an 707 . . 3 (rec((𝑦 ∈ V ↦ 𝑦), 𝐴) ↾ ω) ∈ V
93, 4, 8fvmpt 6249 . 2 (𝐴 ∈ V → (𝑈𝐴) = (rec((𝑦 ∈ V ↦ 𝑦), 𝐴) ↾ ω))
101, 9syl 17 1 (𝐴𝑉 → (𝑈𝐴) = (rec((𝑦 ∈ V ↦ 𝑦), 𝐴) ↾ ω))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1480  wcel 1987  Vcvv 3190   cuni 4409  cmpt 4683  cres 5086  Fun wfun 5851  cfv 5857  ωcom 7027  reccrdg 7465
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4741  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914  ax-inf2 8498
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2913  df-rex 2914  df-reu 2915  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-tp 4160  df-op 4162  df-uni 4410  df-iun 4494  df-br 4624  df-opab 4684  df-mpt 4685  df-tr 4723  df-eprel 4995  df-id 4999  df-po 5005  df-so 5006  df-fr 5043  df-we 5045  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-pred 5649  df-ord 5695  df-on 5696  df-lim 5697  df-suc 5698  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-om 7028  df-wrecs 7367  df-recs 7428  df-rdg 7466
This theorem is referenced by:  itunifn  9199  ituni0  9200  itunisuc  9201
  Copyright terms: Public domain W3C validator