Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  itgsplitioo Structured version   Visualization version   GIF version

Theorem itgsplitioo 23724
 Description: The ∫ integral splits on open intervals with matching endpoints. (Contributed by Mario Carneiro, 2-Sep-2014.)
Hypotheses
Ref Expression
itgsplitioo.1 (𝜑𝐴 ∈ ℝ)
itgsplitioo.2 (𝜑𝐶 ∈ ℝ)
itgsplitioo.3 (𝜑𝐵 ∈ (𝐴[,]𝐶))
itgsplitioo.4 ((𝜑𝑥 ∈ (𝐴(,)𝐶)) → 𝐷 ∈ ℂ)
itgsplitioo.5 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ 𝐷) ∈ 𝐿1)
itgsplitioo.6 (𝜑 → (𝑥 ∈ (𝐵(,)𝐶) ↦ 𝐷) ∈ 𝐿1)
Assertion
Ref Expression
itgsplitioo (𝜑 → ∫(𝐴(,)𝐶)𝐷 d𝑥 = (∫(𝐴(,)𝐵)𝐷 d𝑥 + ∫(𝐵(,)𝐶)𝐷 d𝑥))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝜑,𝑥
Allowed substitution hint:   𝐷(𝑥)

Proof of Theorem itgsplitioo
StepHypRef Expression
1 itgsplitioo.3 . . . . . . 7 (𝜑𝐵 ∈ (𝐴[,]𝐶))
2 itgsplitioo.1 . . . . . . . 8 (𝜑𝐴 ∈ ℝ)
3 itgsplitioo.2 . . . . . . . 8 (𝜑𝐶 ∈ ℝ)
4 elicc2 12352 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 ∈ (𝐴[,]𝐶) ↔ (𝐵 ∈ ℝ ∧ 𝐴𝐵𝐵𝐶)))
52, 3, 4syl2anc 696 . . . . . . 7 (𝜑 → (𝐵 ∈ (𝐴[,]𝐶) ↔ (𝐵 ∈ ℝ ∧ 𝐴𝐵𝐵𝐶)))
61, 5mpbid 222 . . . . . 6 (𝜑 → (𝐵 ∈ ℝ ∧ 𝐴𝐵𝐵𝐶))
76simp2d 1135 . . . . 5 (𝜑𝐴𝐵)
86simp1d 1134 . . . . . 6 (𝜑𝐵 ∈ ℝ)
92, 8leloed 10293 . . . . 5 (𝜑 → (𝐴𝐵 ↔ (𝐴 < 𝐵𝐴 = 𝐵)))
107, 9mpbid 222 . . . 4 (𝜑 → (𝐴 < 𝐵𝐴 = 𝐵))
1110ord 391 . . 3 (𝜑 → (¬ 𝐴 < 𝐵𝐴 = 𝐵))
122rexrd 10202 . . . . . . . . . 10 (𝜑𝐴 ∈ ℝ*)
13 iooss1 12324 . . . . . . . . . 10 ((𝐴 ∈ ℝ*𝐴𝐵) → (𝐵(,)𝐶) ⊆ (𝐴(,)𝐶))
1412, 7, 13syl2anc 696 . . . . . . . . 9 (𝜑 → (𝐵(,)𝐶) ⊆ (𝐴(,)𝐶))
1514sselda 3709 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐵(,)𝐶)) → 𝑥 ∈ (𝐴(,)𝐶))
16 itgsplitioo.4 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴(,)𝐶)) → 𝐷 ∈ ℂ)
1715, 16syldan 488 . . . . . . 7 ((𝜑𝑥 ∈ (𝐵(,)𝐶)) → 𝐷 ∈ ℂ)
18 itgsplitioo.6 . . . . . . 7 (𝜑 → (𝑥 ∈ (𝐵(,)𝐶) ↦ 𝐷) ∈ 𝐿1)
1917, 18itgcl 23670 . . . . . 6 (𝜑 → ∫(𝐵(,)𝐶)𝐷 d𝑥 ∈ ℂ)
2019addid2d 10350 . . . . 5 (𝜑 → (0 + ∫(𝐵(,)𝐶)𝐷 d𝑥) = ∫(𝐵(,)𝐶)𝐷 d𝑥)
2120eqcomd 2730 . . . 4 (𝜑 → ∫(𝐵(,)𝐶)𝐷 d𝑥 = (0 + ∫(𝐵(,)𝐶)𝐷 d𝑥))
22 oveq1 6772 . . . . . 6 (𝐴 = 𝐵 → (𝐴(,)𝐶) = (𝐵(,)𝐶))
23 itgeq1 23659 . . . . . 6 ((𝐴(,)𝐶) = (𝐵(,)𝐶) → ∫(𝐴(,)𝐶)𝐷 d𝑥 = ∫(𝐵(,)𝐶)𝐷 d𝑥)
2422, 23syl 17 . . . . 5 (𝐴 = 𝐵 → ∫(𝐴(,)𝐶)𝐷 d𝑥 = ∫(𝐵(,)𝐶)𝐷 d𝑥)
25 oveq1 6772 . . . . . . . . 9 (𝐴 = 𝐵 → (𝐴(,)𝐵) = (𝐵(,)𝐵))
26 iooid 12317 . . . . . . . . 9 (𝐵(,)𝐵) = ∅
2725, 26syl6eq 2774 . . . . . . . 8 (𝐴 = 𝐵 → (𝐴(,)𝐵) = ∅)
28 itgeq1 23659 . . . . . . . 8 ((𝐴(,)𝐵) = ∅ → ∫(𝐴(,)𝐵)𝐷 d𝑥 = ∫∅𝐷 d𝑥)
2927, 28syl 17 . . . . . . 7 (𝐴 = 𝐵 → ∫(𝐴(,)𝐵)𝐷 d𝑥 = ∫∅𝐷 d𝑥)
30 itg0 23666 . . . . . . 7 ∫∅𝐷 d𝑥 = 0
3129, 30syl6eq 2774 . . . . . 6 (𝐴 = 𝐵 → ∫(𝐴(,)𝐵)𝐷 d𝑥 = 0)
3231oveq1d 6780 . . . . 5 (𝐴 = 𝐵 → (∫(𝐴(,)𝐵)𝐷 d𝑥 + ∫(𝐵(,)𝐶)𝐷 d𝑥) = (0 + ∫(𝐵(,)𝐶)𝐷 d𝑥))
3324, 32eqeq12d 2739 . . . 4 (𝐴 = 𝐵 → (∫(𝐴(,)𝐶)𝐷 d𝑥 = (∫(𝐴(,)𝐵)𝐷 d𝑥 + ∫(𝐵(,)𝐶)𝐷 d𝑥) ↔ ∫(𝐵(,)𝐶)𝐷 d𝑥 = (0 + ∫(𝐵(,)𝐶)𝐷 d𝑥)))
3421, 33syl5ibrcom 237 . . 3 (𝜑 → (𝐴 = 𝐵 → ∫(𝐴(,)𝐶)𝐷 d𝑥 = (∫(𝐴(,)𝐵)𝐷 d𝑥 + ∫(𝐵(,)𝐶)𝐷 d𝑥)))
3511, 34syld 47 . 2 (𝜑 → (¬ 𝐴 < 𝐵 → ∫(𝐴(,)𝐶)𝐷 d𝑥 = (∫(𝐴(,)𝐵)𝐷 d𝑥 + ∫(𝐵(,)𝐶)𝐷 d𝑥)))
366simp3d 1136 . . . . 5 (𝜑𝐵𝐶)
378, 3leloed 10293 . . . . 5 (𝜑 → (𝐵𝐶 ↔ (𝐵 < 𝐶𝐵 = 𝐶)))
3836, 37mpbid 222 . . . 4 (𝜑 → (𝐵 < 𝐶𝐵 = 𝐶))
3938ord 391 . . 3 (𝜑 → (¬ 𝐵 < 𝐶𝐵 = 𝐶))
403rexrd 10202 . . . . . . . . . 10 (𝜑𝐶 ∈ ℝ*)
41 iooss2 12325 . . . . . . . . . 10 ((𝐶 ∈ ℝ*𝐵𝐶) → (𝐴(,)𝐵) ⊆ (𝐴(,)𝐶))
4240, 36, 41syl2anc 696 . . . . . . . . 9 (𝜑 → (𝐴(,)𝐵) ⊆ (𝐴(,)𝐶))
4342sselda 3709 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑥 ∈ (𝐴(,)𝐶))
4443, 16syldan 488 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝐷 ∈ ℂ)
45 itgsplitioo.5 . . . . . . 7 (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ 𝐷) ∈ 𝐿1)
4644, 45itgcl 23670 . . . . . 6 (𝜑 → ∫(𝐴(,)𝐵)𝐷 d𝑥 ∈ ℂ)
4746addid1d 10349 . . . . 5 (𝜑 → (∫(𝐴(,)𝐵)𝐷 d𝑥 + 0) = ∫(𝐴(,)𝐵)𝐷 d𝑥)
4847eqcomd 2730 . . . 4 (𝜑 → ∫(𝐴(,)𝐵)𝐷 d𝑥 = (∫(𝐴(,)𝐵)𝐷 d𝑥 + 0))
49 oveq2 6773 . . . . . 6 (𝐵 = 𝐶 → (𝐴(,)𝐵) = (𝐴(,)𝐶))
50 itgeq1 23659 . . . . . 6 ((𝐴(,)𝐵) = (𝐴(,)𝐶) → ∫(𝐴(,)𝐵)𝐷 d𝑥 = ∫(𝐴(,)𝐶)𝐷 d𝑥)
5149, 50syl 17 . . . . 5 (𝐵 = 𝐶 → ∫(𝐴(,)𝐵)𝐷 d𝑥 = ∫(𝐴(,)𝐶)𝐷 d𝑥)
52 oveq2 6773 . . . . . . . . 9 (𝐵 = 𝐶 → (𝐵(,)𝐵) = (𝐵(,)𝐶))
5326, 52syl5eqr 2772 . . . . . . . 8 (𝐵 = 𝐶 → ∅ = (𝐵(,)𝐶))
54 itgeq1 23659 . . . . . . . 8 (∅ = (𝐵(,)𝐶) → ∫∅𝐷 d𝑥 = ∫(𝐵(,)𝐶)𝐷 d𝑥)
5553, 54syl 17 . . . . . . 7 (𝐵 = 𝐶 → ∫∅𝐷 d𝑥 = ∫(𝐵(,)𝐶)𝐷 d𝑥)
5630, 55syl5eqr 2772 . . . . . 6 (𝐵 = 𝐶 → 0 = ∫(𝐵(,)𝐶)𝐷 d𝑥)
5756oveq2d 6781 . . . . 5 (𝐵 = 𝐶 → (∫(𝐴(,)𝐵)𝐷 d𝑥 + 0) = (∫(𝐴(,)𝐵)𝐷 d𝑥 + ∫(𝐵(,)𝐶)𝐷 d𝑥))
5851, 57eqeq12d 2739 . . . 4 (𝐵 = 𝐶 → (∫(𝐴(,)𝐵)𝐷 d𝑥 = (∫(𝐴(,)𝐵)𝐷 d𝑥 + 0) ↔ ∫(𝐴(,)𝐶)𝐷 d𝑥 = (∫(𝐴(,)𝐵)𝐷 d𝑥 + ∫(𝐵(,)𝐶)𝐷 d𝑥)))
5948, 58syl5ibcom 235 . . 3 (𝜑 → (𝐵 = 𝐶 → ∫(𝐴(,)𝐶)𝐷 d𝑥 = (∫(𝐴(,)𝐵)𝐷 d𝑥 + ∫(𝐵(,)𝐶)𝐷 d𝑥)))
6039, 59syld 47 . 2 (𝜑 → (¬ 𝐵 < 𝐶 → ∫(𝐴(,)𝐶)𝐷 d𝑥 = (∫(𝐴(,)𝐵)𝐷 d𝑥 + ∫(𝐵(,)𝐶)𝐷 d𝑥)))
61 indir 3983 . . . . . . . 8 (((𝐴(,)𝐵) ∪ {𝐵}) ∩ (𝐵(,)𝐶)) = (((𝐴(,)𝐵) ∩ (𝐵(,)𝐶)) ∪ ({𝐵} ∩ (𝐵(,)𝐶)))
628rexrd 10202 . . . . . . . . . . . . 13 (𝜑𝐵 ∈ ℝ*)
6312, 62jca 555 . . . . . . . . . . . 12 (𝜑 → (𝐴 ∈ ℝ*𝐵 ∈ ℝ*))
6463adantr 472 . . . . . . . . . . 11 ((𝜑 ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → (𝐴 ∈ ℝ*𝐵 ∈ ℝ*))
6562, 40jca 555 . . . . . . . . . . . 12 (𝜑 → (𝐵 ∈ ℝ*𝐶 ∈ ℝ*))
6665adantr 472 . . . . . . . . . . 11 ((𝜑 ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → (𝐵 ∈ ℝ*𝐶 ∈ ℝ*))
678adantr 472 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → 𝐵 ∈ ℝ)
6867leidd 10707 . . . . . . . . . . 11 ((𝜑 ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → 𝐵𝐵)
69 ioodisj 12416 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐵 ∈ ℝ*𝐶 ∈ ℝ*)) ∧ 𝐵𝐵) → ((𝐴(,)𝐵) ∩ (𝐵(,)𝐶)) = ∅)
7064, 66, 68, 69syl21anc 1438 . . . . . . . . . 10 ((𝜑 ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → ((𝐴(,)𝐵) ∩ (𝐵(,)𝐶)) = ∅)
71 incom 3913 . . . . . . . . . . 11 ({𝐵} ∩ (𝐵(,)𝐶)) = ((𝐵(,)𝐶) ∩ {𝐵})
7267ltnrd 10284 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → ¬ 𝐵 < 𝐵)
73 eliooord 12347 . . . . . . . . . . . . . 14 (𝐵 ∈ (𝐵(,)𝐶) → (𝐵 < 𝐵𝐵 < 𝐶))
7473simpld 477 . . . . . . . . . . . . 13 (𝐵 ∈ (𝐵(,)𝐶) → 𝐵 < 𝐵)
7572, 74nsyl 135 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → ¬ 𝐵 ∈ (𝐵(,)𝐶))
76 disjsn 4353 . . . . . . . . . . . 12 (((𝐵(,)𝐶) ∩ {𝐵}) = ∅ ↔ ¬ 𝐵 ∈ (𝐵(,)𝐶))
7775, 76sylibr 224 . . . . . . . . . . 11 ((𝜑 ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → ((𝐵(,)𝐶) ∩ {𝐵}) = ∅)
7871, 77syl5eq 2770 . . . . . . . . . 10 ((𝜑 ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → ({𝐵} ∩ (𝐵(,)𝐶)) = ∅)
7970, 78uneq12d 3876 . . . . . . . . 9 ((𝜑 ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → (((𝐴(,)𝐵) ∩ (𝐵(,)𝐶)) ∪ ({𝐵} ∩ (𝐵(,)𝐶))) = (∅ ∪ ∅))
80 un0 4075 . . . . . . . . 9 (∅ ∪ ∅) = ∅
8179, 80syl6eq 2774 . . . . . . . 8 ((𝜑 ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → (((𝐴(,)𝐵) ∩ (𝐵(,)𝐶)) ∪ ({𝐵} ∩ (𝐵(,)𝐶))) = ∅)
8261, 81syl5eq 2770 . . . . . . 7 ((𝜑 ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → (((𝐴(,)𝐵) ∪ {𝐵}) ∩ (𝐵(,)𝐶)) = ∅)
8382fveq2d 6308 . . . . . 6 ((𝜑 ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → (vol*‘(((𝐴(,)𝐵) ∪ {𝐵}) ∩ (𝐵(,)𝐶))) = (vol*‘∅))
84 ovol0 23382 . . . . . 6 (vol*‘∅) = 0
8583, 84syl6eq 2774 . . . . 5 ((𝜑 ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → (vol*‘(((𝐴(,)𝐵) ∪ {𝐵}) ∩ (𝐵(,)𝐶))) = 0)
8612, 62, 403jca 1379 . . . . . . 7 (𝜑 → (𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*))
87 ioojoin 12417 . . . . . . 7 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → (((𝐴(,)𝐵) ∪ {𝐵}) ∪ (𝐵(,)𝐶)) = (𝐴(,)𝐶))
8886, 87sylan 489 . . . . . 6 ((𝜑 ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → (((𝐴(,)𝐵) ∪ {𝐵}) ∪ (𝐵(,)𝐶)) = (𝐴(,)𝐶))
8988eqcomd 2730 . . . . 5 ((𝜑 ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → (𝐴(,)𝐶) = (((𝐴(,)𝐵) ∪ {𝐵}) ∪ (𝐵(,)𝐶)))
9016adantlr 753 . . . . 5 (((𝜑 ∧ (𝐴 < 𝐵𝐵 < 𝐶)) ∧ 𝑥 ∈ (𝐴(,)𝐶)) → 𝐷 ∈ ℂ)
9145adantr 472 . . . . . 6 ((𝜑 ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → (𝑥 ∈ (𝐴(,)𝐵) ↦ 𝐷) ∈ 𝐿1)
92 ssun1 3884 . . . . . . . . 9 (𝐴(,)𝐵) ⊆ ((𝐴(,)𝐵) ∪ {𝐵})
9392a1i 11 . . . . . . . 8 ((𝜑 ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → (𝐴(,)𝐵) ⊆ ((𝐴(,)𝐵) ∪ {𝐵}))
94 ioossre 12349 . . . . . . . . . 10 (𝐴(,)𝐵) ⊆ ℝ
9594a1i 11 . . . . . . . . 9 ((𝜑 ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → (𝐴(,)𝐵) ⊆ ℝ)
9667snssd 4448 . . . . . . . . 9 ((𝜑 ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → {𝐵} ⊆ ℝ)
9795, 96unssd 3897 . . . . . . . 8 ((𝜑 ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → ((𝐴(,)𝐵) ∪ {𝐵}) ⊆ ℝ)
98 uncom 3865 . . . . . . . . . . . . 13 ((𝐴(,)𝐵) ∪ {𝐵}) = ({𝐵} ∪ (𝐴(,)𝐵))
9998difeq1i 3832 . . . . . . . . . . . 12 (((𝐴(,)𝐵) ∪ {𝐵}) ∖ (𝐴(,)𝐵)) = (({𝐵} ∪ (𝐴(,)𝐵)) ∖ (𝐴(,)𝐵))
100 difun2 4156 . . . . . . . . . . . 12 (({𝐵} ∪ (𝐴(,)𝐵)) ∖ (𝐴(,)𝐵)) = ({𝐵} ∖ (𝐴(,)𝐵))
10199, 100eqtri 2746 . . . . . . . . . . 11 (((𝐴(,)𝐵) ∪ {𝐵}) ∖ (𝐴(,)𝐵)) = ({𝐵} ∖ (𝐴(,)𝐵))
102 difss 3845 . . . . . . . . . . 11 ({𝐵} ∖ (𝐴(,)𝐵)) ⊆ {𝐵}
103101, 102eqsstri 3741 . . . . . . . . . 10 (((𝐴(,)𝐵) ∪ {𝐵}) ∖ (𝐴(,)𝐵)) ⊆ {𝐵}
104103a1i 11 . . . . . . . . 9 ((𝜑 ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → (((𝐴(,)𝐵) ∪ {𝐵}) ∖ (𝐴(,)𝐵)) ⊆ {𝐵})
105 ovolsn 23384 . . . . . . . . . 10 (𝐵 ∈ ℝ → (vol*‘{𝐵}) = 0)
10667, 105syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → (vol*‘{𝐵}) = 0)
107 ovolssnul 23376 . . . . . . . . 9 (((((𝐴(,)𝐵) ∪ {𝐵}) ∖ (𝐴(,)𝐵)) ⊆ {𝐵} ∧ {𝐵} ⊆ ℝ ∧ (vol*‘{𝐵}) = 0) → (vol*‘(((𝐴(,)𝐵) ∪ {𝐵}) ∖ (𝐴(,)𝐵))) = 0)
108104, 96, 106, 107syl3anc 1439 . . . . . . . 8 ((𝜑 ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → (vol*‘(((𝐴(,)𝐵) ∪ {𝐵}) ∖ (𝐴(,)𝐵))) = 0)
109 ssun1 3884 . . . . . . . . . . 11 ((𝐴(,)𝐵) ∪ {𝐵}) ⊆ (((𝐴(,)𝐵) ∪ {𝐵}) ∪ (𝐵(,)𝐶))
110109, 88syl5sseq 3759 . . . . . . . . . 10 ((𝜑 ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → ((𝐴(,)𝐵) ∪ {𝐵}) ⊆ (𝐴(,)𝐶))
111110sselda 3709 . . . . . . . . 9 (((𝜑 ∧ (𝐴 < 𝐵𝐵 < 𝐶)) ∧ 𝑥 ∈ ((𝐴(,)𝐵) ∪ {𝐵})) → 𝑥 ∈ (𝐴(,)𝐶))
112111, 90syldan 488 . . . . . . . 8 (((𝜑 ∧ (𝐴 < 𝐵𝐵 < 𝐶)) ∧ 𝑥 ∈ ((𝐴(,)𝐵) ∪ {𝐵})) → 𝐷 ∈ ℂ)
11393, 97, 108, 112itgss3 23701 . . . . . . 7 ((𝜑 ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → (((𝑥 ∈ (𝐴(,)𝐵) ↦ 𝐷) ∈ 𝐿1 ↔ (𝑥 ∈ ((𝐴(,)𝐵) ∪ {𝐵}) ↦ 𝐷) ∈ 𝐿1) ∧ ∫(𝐴(,)𝐵)𝐷 d𝑥 = ∫((𝐴(,)𝐵) ∪ {𝐵})𝐷 d𝑥))
114113simpld 477 . . . . . 6 ((𝜑 ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → ((𝑥 ∈ (𝐴(,)𝐵) ↦ 𝐷) ∈ 𝐿1 ↔ (𝑥 ∈ ((𝐴(,)𝐵) ∪ {𝐵}) ↦ 𝐷) ∈ 𝐿1))
11591, 114mpbid 222 . . . . 5 ((𝜑 ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → (𝑥 ∈ ((𝐴(,)𝐵) ∪ {𝐵}) ↦ 𝐷) ∈ 𝐿1)
11618adantr 472 . . . . 5 ((𝜑 ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → (𝑥 ∈ (𝐵(,)𝐶) ↦ 𝐷) ∈ 𝐿1)
11785, 89, 90, 115, 116itgsplit 23722 . . . 4 ((𝜑 ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → ∫(𝐴(,)𝐶)𝐷 d𝑥 = (∫((𝐴(,)𝐵) ∪ {𝐵})𝐷 d𝑥 + ∫(𝐵(,)𝐶)𝐷 d𝑥))
118113simprd 482 . . . . 5 ((𝜑 ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → ∫(𝐴(,)𝐵)𝐷 d𝑥 = ∫((𝐴(,)𝐵) ∪ {𝐵})𝐷 d𝑥)
119118oveq1d 6780 . . . 4 ((𝜑 ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → (∫(𝐴(,)𝐵)𝐷 d𝑥 + ∫(𝐵(,)𝐶)𝐷 d𝑥) = (∫((𝐴(,)𝐵) ∪ {𝐵})𝐷 d𝑥 + ∫(𝐵(,)𝐶)𝐷 d𝑥))
120117, 119eqtr4d 2761 . . 3 ((𝜑 ∧ (𝐴 < 𝐵𝐵 < 𝐶)) → ∫(𝐴(,)𝐶)𝐷 d𝑥 = (∫(𝐴(,)𝐵)𝐷 d𝑥 + ∫(𝐵(,)𝐶)𝐷 d𝑥))
121120ex 449 . 2 (𝜑 → ((𝐴 < 𝐵𝐵 < 𝐶) → ∫(𝐴(,)𝐶)𝐷 d𝑥 = (∫(𝐴(,)𝐵)𝐷 d𝑥 + ∫(𝐵(,)𝐶)𝐷 d𝑥)))
12235, 60, 121ecased 1022 1 (𝜑 → ∫(𝐴(,)𝐶)𝐷 d𝑥 = (∫(𝐴(,)𝐵)𝐷 d𝑥 + ∫(𝐵(,)𝐶)𝐷 d𝑥))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 196   ∨ wo 382   ∧ wa 383   ∧ w3a 1072   = wceq 1596   ∈ wcel 2103   ∖ cdif 3677   ∪ cun 3678   ∩ cin 3679   ⊆ wss 3680  ∅c0 4023  {csn 4285   class class class wbr 4760   ↦ cmpt 4837  ‘cfv 6001  (class class class)co 6765  ℂcc 10047  ℝcr 10048  0cc0 10049   + caddc 10052  ℝ*cxr 10186   < clt 10187   ≤ cle 10188  (,)cioo 12289  [,]cicc 12292  vol*covol 23352  𝐿1cibl 23506  ∫citg 23507 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1835  ax-4 1850  ax-5 1952  ax-6 2018  ax-7 2054  ax-8 2105  ax-9 2112  ax-10 2132  ax-11 2147  ax-12 2160  ax-13 2355  ax-ext 2704  ax-rep 4879  ax-sep 4889  ax-nul 4897  ax-pow 4948  ax-pr 5011  ax-un 7066  ax-inf2 8651  ax-cnex 10105  ax-resscn 10106  ax-1cn 10107  ax-icn 10108  ax-addcl 10109  ax-addrcl 10110  ax-mulcl 10111  ax-mulrcl 10112  ax-mulcom 10113  ax-addass 10114  ax-mulass 10115  ax-distr 10116  ax-i2m1 10117  ax-1ne0 10118  ax-1rid 10119  ax-rnegex 10120  ax-rrecex 10121  ax-cnre 10122  ax-pre-lttri 10123  ax-pre-lttrn 10124  ax-pre-ltadd 10125  ax-pre-mulgt0 10126  ax-pre-sup 10127  ax-addf 10128 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1599  df-fal 1602  df-ex 1818  df-nf 1823  df-sb 2011  df-eu 2575  df-mo 2576  df-clab 2711  df-cleq 2717  df-clel 2720  df-nfc 2855  df-ne 2897  df-nel 3000  df-ral 3019  df-rex 3020  df-reu 3021  df-rmo 3022  df-rab 3023  df-v 3306  df-sbc 3542  df-csb 3640  df-dif 3683  df-un 3685  df-in 3687  df-ss 3694  df-pss 3696  df-nul 4024  df-if 4195  df-pw 4268  df-sn 4286  df-pr 4288  df-tp 4290  df-op 4292  df-uni 4545  df-int 4584  df-iun 4630  df-disj 4729  df-br 4761  df-opab 4821  df-mpt 4838  df-tr 4861  df-id 5128  df-eprel 5133  df-po 5139  df-so 5140  df-fr 5177  df-se 5178  df-we 5179  df-xp 5224  df-rel 5225  df-cnv 5226  df-co 5227  df-dm 5228  df-rn 5229  df-res 5230  df-ima 5231  df-pred 5793  df-ord 5839  df-on 5840  df-lim 5841  df-suc 5842  df-iota 5964  df-fun 6003  df-fn 6004  df-f 6005  df-f1 6006  df-fo 6007  df-f1o 6008  df-fv 6009  df-isom 6010  df-riota 6726  df-ov 6768  df-oprab 6769  df-mpt2 6770  df-of 7014  df-ofr 7015  df-om 7183  df-1st 7285  df-2nd 7286  df-wrecs 7527  df-recs 7588  df-rdg 7626  df-1o 7680  df-2o 7681  df-oadd 7684  df-er 7862  df-map 7976  df-pm 7977  df-en 8073  df-dom 8074  df-sdom 8075  df-fin 8076  df-fi 8433  df-sup 8464  df-inf 8465  df-oi 8531  df-card 8878  df-cda 9103  df-pnf 10189  df-mnf 10190  df-xr 10191  df-ltxr 10192  df-le 10193  df-sub 10381  df-neg 10382  df-div 10798  df-nn 11134  df-2 11192  df-3 11193  df-4 11194  df-n0 11406  df-z 11491  df-uz 11801  df-q 11903  df-rp 11947  df-xneg 12060  df-xadd 12061  df-xmul 12062  df-ioo 12293  df-ico 12295  df-icc 12296  df-fz 12441  df-fzo 12581  df-fl 12708  df-mod 12784  df-seq 12917  df-exp 12976  df-hash 13233  df-cj 13959  df-re 13960  df-im 13961  df-sqrt 14095  df-abs 14096  df-clim 14339  df-sum 14537  df-rest 16206  df-topgen 16227  df-psmet 19861  df-xmet 19862  df-met 19863  df-bl 19864  df-mopn 19865  df-top 20822  df-topon 20839  df-bases 20873  df-cmp 21313  df-ovol 23354  df-vol 23355  df-mbf 23508  df-itg1 23509  df-itg2 23510  df-ibl 23511  df-itg 23512  df-0p 23557 This theorem is referenced by:  ditgsplitlem  23744  ftc1lem1  23918  ftc1anc  33725  fourierdlem103  40846  fourierdlem104  40847  fourierdlem111  40854  sqwvfoura  40865  sqwvfourb  40866
 Copyright terms: Public domain W3C validator