Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itgperiod Structured version   Visualization version   GIF version

Theorem itgperiod 40719
Description: The integral of a periodic function, with period 𝑇 stays the same if the domain of integration is shifted. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
itgperiod.a (𝜑𝐴 ∈ ℝ)
itgperiod.b (𝜑𝐵 ∈ ℝ)
itgperiod.aleb (𝜑𝐴𝐵)
itgperiod.t (𝜑𝑇 ∈ ℝ+)
itgperiod.f (𝜑𝐹:ℝ⟶ℂ)
itgperiod.fper ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
itgperiod.fcn (𝜑 → (𝐹 ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℂ))
Assertion
Ref Expression
itgperiod (𝜑 → ∫((𝐴 + 𝑇)[,](𝐵 + 𝑇))(𝐹𝑥) d𝑥 = ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹   𝑥,𝑇   𝜑,𝑥

Proof of Theorem itgperiod
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 itgperiod.a . . . . 5 (𝜑𝐴 ∈ ℝ)
2 itgperiod.b . . . . 5 (𝜑𝐵 ∈ ℝ)
3 itgperiod.t . . . . . 6 (𝜑𝑇 ∈ ℝ+)
43rpred 12086 . . . . 5 (𝜑𝑇 ∈ ℝ)
5 itgperiod.aleb . . . . 5 (𝜑𝐴𝐵)
61, 2, 4, 5leadd1dd 10854 . . . 4 (𝜑 → (𝐴 + 𝑇) ≤ (𝐵 + 𝑇))
76ditgpos 23840 . . 3 (𝜑 → ⨜[(𝐴 + 𝑇) → (𝐵 + 𝑇)](𝐹𝑥) d𝑥 = ∫((𝐴 + 𝑇)(,)(𝐵 + 𝑇))(𝐹𝑥) d𝑥)
81, 4readdcld 10282 . . . 4 (𝜑 → (𝐴 + 𝑇) ∈ ℝ)
92, 4readdcld 10282 . . . 4 (𝜑 → (𝐵 + 𝑇) ∈ ℝ)
10 itgperiod.f . . . . . 6 (𝜑𝐹:ℝ⟶ℂ)
1110adantr 472 . . . . 5 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → 𝐹:ℝ⟶ℂ)
128adantr 472 . . . . . 6 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → (𝐴 + 𝑇) ∈ ℝ)
139adantr 472 . . . . . 6 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → (𝐵 + 𝑇) ∈ ℝ)
14 simpr 479 . . . . . 6 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → 𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇)))
15 eliccre 40250 . . . . . 6 (((𝐴 + 𝑇) ∈ ℝ ∧ (𝐵 + 𝑇) ∈ ℝ ∧ 𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → 𝑥 ∈ ℝ)
1612, 13, 14, 15syl3anc 1477 . . . . 5 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → 𝑥 ∈ ℝ)
1711, 16ffvelrnd 6525 . . . 4 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → (𝐹𝑥) ∈ ℂ)
188, 9, 17itgioo 23802 . . 3 (𝜑 → ∫((𝐴 + 𝑇)(,)(𝐵 + 𝑇))(𝐹𝑥) d𝑥 = ∫((𝐴 + 𝑇)[,](𝐵 + 𝑇))(𝐹𝑥) d𝑥)
197, 18eqtr2d 2796 . 2 (𝜑 → ∫((𝐴 + 𝑇)[,](𝐵 + 𝑇))(𝐹𝑥) d𝑥 = ⨜[(𝐴 + 𝑇) → (𝐵 + 𝑇)](𝐹𝑥) d𝑥)
20 eqid 2761 . . . 4 (𝑦 ∈ ℂ ↦ (𝑦 + 𝑇)) = (𝑦 ∈ ℂ ↦ (𝑦 + 𝑇))
214recnd 10281 . . . . 5 (𝜑𝑇 ∈ ℂ)
2220addccncf 22941 . . . . 5 (𝑇 ∈ ℂ → (𝑦 ∈ ℂ ↦ (𝑦 + 𝑇)) ∈ (ℂ–cn→ℂ))
2321, 22syl 17 . . . 4 (𝜑 → (𝑦 ∈ ℂ ↦ (𝑦 + 𝑇)) ∈ (ℂ–cn→ℂ))
241, 2iccssred 40249 . . . . 5 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
25 ax-resscn 10206 . . . . 5 ℝ ⊆ ℂ
2624, 25syl6ss 3757 . . . 4 (𝜑 → (𝐴[,]𝐵) ⊆ ℂ)
278, 9iccssred 40249 . . . . 5 (𝜑 → ((𝐴 + 𝑇)[,](𝐵 + 𝑇)) ⊆ ℝ)
2827, 25syl6ss 3757 . . . 4 (𝜑 → ((𝐴 + 𝑇)[,](𝐵 + 𝑇)) ⊆ ℂ)
298adantr 472 . . . . 5 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → (𝐴 + 𝑇) ∈ ℝ)
309adantr 472 . . . . 5 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → (𝐵 + 𝑇) ∈ ℝ)
3124sselda 3745 . . . . . 6 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → 𝑦 ∈ ℝ)
324adantr 472 . . . . . 6 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → 𝑇 ∈ ℝ)
3331, 32readdcld 10282 . . . . 5 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → (𝑦 + 𝑇) ∈ ℝ)
341adantr 472 . . . . . 6 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → 𝐴 ∈ ℝ)
35 simpr 479 . . . . . . . 8 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → 𝑦 ∈ (𝐴[,]𝐵))
362adantr 472 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → 𝐵 ∈ ℝ)
37 elicc2 12452 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑦 ∈ (𝐴[,]𝐵) ↔ (𝑦 ∈ ℝ ∧ 𝐴𝑦𝑦𝐵)))
3834, 36, 37syl2anc 696 . . . . . . . 8 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → (𝑦 ∈ (𝐴[,]𝐵) ↔ (𝑦 ∈ ℝ ∧ 𝐴𝑦𝑦𝐵)))
3935, 38mpbid 222 . . . . . . 7 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → (𝑦 ∈ ℝ ∧ 𝐴𝑦𝑦𝐵))
4039simp2d 1138 . . . . . 6 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → 𝐴𝑦)
4134, 31, 32, 40leadd1dd 10854 . . . . 5 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → (𝐴 + 𝑇) ≤ (𝑦 + 𝑇))
4239simp3d 1139 . . . . . 6 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → 𝑦𝐵)
4331, 36, 32, 42leadd1dd 10854 . . . . 5 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → (𝑦 + 𝑇) ≤ (𝐵 + 𝑇))
4429, 30, 33, 41, 43eliccd 40248 . . . 4 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → (𝑦 + 𝑇) ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇)))
4520, 23, 26, 28, 44cncfmptssg 40605 . . 3 (𝜑 → (𝑦 ∈ (𝐴[,]𝐵) ↦ (𝑦 + 𝑇)) ∈ ((𝐴[,]𝐵)–cn→((𝐴 + 𝑇)[,](𝐵 + 𝑇))))
46 eqeq1 2765 . . . . . . . 8 (𝑤 = 𝑥 → (𝑤 = (𝑧 + 𝑇) ↔ 𝑥 = (𝑧 + 𝑇)))
4746rexbidv 3191 . . . . . . 7 (𝑤 = 𝑥 → (∃𝑧 ∈ (𝐴[,]𝐵)𝑤 = (𝑧 + 𝑇) ↔ ∃𝑧 ∈ (𝐴[,]𝐵)𝑥 = (𝑧 + 𝑇)))
48 oveq1 6822 . . . . . . . . 9 (𝑧 = 𝑦 → (𝑧 + 𝑇) = (𝑦 + 𝑇))
4948eqeq2d 2771 . . . . . . . 8 (𝑧 = 𝑦 → (𝑥 = (𝑧 + 𝑇) ↔ 𝑥 = (𝑦 + 𝑇)))
5049cbvrexv 3312 . . . . . . 7 (∃𝑧 ∈ (𝐴[,]𝐵)𝑥 = (𝑧 + 𝑇) ↔ ∃𝑦 ∈ (𝐴[,]𝐵)𝑥 = (𝑦 + 𝑇))
5147, 50syl6bb 276 . . . . . 6 (𝑤 = 𝑥 → (∃𝑧 ∈ (𝐴[,]𝐵)𝑤 = (𝑧 + 𝑇) ↔ ∃𝑦 ∈ (𝐴[,]𝐵)𝑥 = (𝑦 + 𝑇)))
5251cbvrabv 3340 . . . . 5 {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴[,]𝐵)𝑤 = (𝑧 + 𝑇)} = {𝑥 ∈ ℂ ∣ ∃𝑦 ∈ (𝐴[,]𝐵)𝑥 = (𝑦 + 𝑇)}
53 ffdm 6224 . . . . . . 7 (𝐹:ℝ⟶ℂ → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℝ))
5410, 53syl 17 . . . . . 6 (𝜑 → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℝ))
5554simpld 477 . . . . 5 (𝜑𝐹:dom 𝐹⟶ℂ)
56 simp3 1133 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑤 = (𝑧 + 𝑇)) → 𝑤 = (𝑧 + 𝑇))
5724sselda 3745 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ (𝐴[,]𝐵)) → 𝑧 ∈ ℝ)
584adantr 472 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ (𝐴[,]𝐵)) → 𝑇 ∈ ℝ)
5957, 58readdcld 10282 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (𝐴[,]𝐵)) → (𝑧 + 𝑇) ∈ ℝ)
60593adant3 1127 . . . . . . . . . 10 ((𝜑𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑤 = (𝑧 + 𝑇)) → (𝑧 + 𝑇) ∈ ℝ)
6156, 60eqeltrd 2840 . . . . . . . . 9 ((𝜑𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑤 = (𝑧 + 𝑇)) → 𝑤 ∈ ℝ)
6261rexlimdv3a 3172 . . . . . . . 8 (𝜑 → (∃𝑧 ∈ (𝐴[,]𝐵)𝑤 = (𝑧 + 𝑇) → 𝑤 ∈ ℝ))
6362ralrimivw 3106 . . . . . . 7 (𝜑 → ∀𝑤 ∈ ℂ (∃𝑧 ∈ (𝐴[,]𝐵)𝑤 = (𝑧 + 𝑇) → 𝑤 ∈ ℝ))
64 rabss 3821 . . . . . . 7 ({𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴[,]𝐵)𝑤 = (𝑧 + 𝑇)} ⊆ ℝ ↔ ∀𝑤 ∈ ℂ (∃𝑧 ∈ (𝐴[,]𝐵)𝑤 = (𝑧 + 𝑇) → 𝑤 ∈ ℝ))
6563, 64sylibr 224 . . . . . 6 (𝜑 → {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴[,]𝐵)𝑤 = (𝑧 + 𝑇)} ⊆ ℝ)
66 fdm 6213 . . . . . . 7 (𝐹:ℝ⟶ℂ → dom 𝐹 = ℝ)
6710, 66syl 17 . . . . . 6 (𝜑 → dom 𝐹 = ℝ)
6865, 67sseqtr4d 3784 . . . . 5 (𝜑 → {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴[,]𝐵)𝑤 = (𝑧 + 𝑇)} ⊆ dom 𝐹)
69 itgperiod.fper . . . . 5 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))
70 itgperiod.fcn . . . . 5 (𝜑 → (𝐹 ↾ (𝐴[,]𝐵)) ∈ ((𝐴[,]𝐵)–cn→ℂ))
7126, 4, 52, 55, 68, 69, 70cncfperiod 40614 . . . 4 (𝜑 → (𝐹 ↾ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴[,]𝐵)𝑤 = (𝑧 + 𝑇)}) ∈ ({𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴[,]𝐵)𝑤 = (𝑧 + 𝑇)}–cn→ℂ))
7247elrab 3505 . . . . . . . . 9 (𝑥 ∈ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴[,]𝐵)𝑤 = (𝑧 + 𝑇)} ↔ (𝑥 ∈ ℂ ∧ ∃𝑧 ∈ (𝐴[,]𝐵)𝑥 = (𝑧 + 𝑇)))
73 simprr 813 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ ∃𝑧 ∈ (𝐴[,]𝐵)𝑥 = (𝑧 + 𝑇))) → ∃𝑧 ∈ (𝐴[,]𝐵)𝑥 = (𝑧 + 𝑇))
74 nfv 1993 . . . . . . . . . . . 12 𝑧𝜑
75 nfv 1993 . . . . . . . . . . . . 13 𝑧 𝑥 ∈ ℂ
76 nfre1 3144 . . . . . . . . . . . . 13 𝑧𝑧 ∈ (𝐴[,]𝐵)𝑥 = (𝑧 + 𝑇)
7775, 76nfan 1978 . . . . . . . . . . . 12 𝑧(𝑥 ∈ ℂ ∧ ∃𝑧 ∈ (𝐴[,]𝐵)𝑥 = (𝑧 + 𝑇))
7874, 77nfan 1978 . . . . . . . . . . 11 𝑧(𝜑 ∧ (𝑥 ∈ ℂ ∧ ∃𝑧 ∈ (𝐴[,]𝐵)𝑥 = (𝑧 + 𝑇)))
79 nfv 1993 . . . . . . . . . . 11 𝑧 𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))
80 simp3 1133 . . . . . . . . . . . . . 14 ((𝜑𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑥 = (𝑧 + 𝑇)) → 𝑥 = (𝑧 + 𝑇))
811adantr 472 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑧 ∈ (𝐴[,]𝐵)) → 𝐴 ∈ ℝ)
82 simpr 479 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑧 ∈ (𝐴[,]𝐵)) → 𝑧 ∈ (𝐴[,]𝐵))
832adantr 472 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑧 ∈ (𝐴[,]𝐵)) → 𝐵 ∈ ℝ)
84 elicc2 12452 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑧 ∈ (𝐴[,]𝐵) ↔ (𝑧 ∈ ℝ ∧ 𝐴𝑧𝑧𝐵)))
8581, 83, 84syl2anc 696 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑧 ∈ (𝐴[,]𝐵)) → (𝑧 ∈ (𝐴[,]𝐵) ↔ (𝑧 ∈ ℝ ∧ 𝐴𝑧𝑧𝐵)))
8682, 85mpbid 222 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑧 ∈ (𝐴[,]𝐵)) → (𝑧 ∈ ℝ ∧ 𝐴𝑧𝑧𝐵))
8786simp2d 1138 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑧 ∈ (𝐴[,]𝐵)) → 𝐴𝑧)
8881, 57, 58, 87leadd1dd 10854 . . . . . . . . . . . . . . . . 17 ((𝜑𝑧 ∈ (𝐴[,]𝐵)) → (𝐴 + 𝑇) ≤ (𝑧 + 𝑇))
8986simp3d 1139 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑧 ∈ (𝐴[,]𝐵)) → 𝑧𝐵)
9057, 83, 58, 89leadd1dd 10854 . . . . . . . . . . . . . . . . 17 ((𝜑𝑧 ∈ (𝐴[,]𝐵)) → (𝑧 + 𝑇) ≤ (𝐵 + 𝑇))
9159, 88, 903jca 1123 . . . . . . . . . . . . . . . 16 ((𝜑𝑧 ∈ (𝐴[,]𝐵)) → ((𝑧 + 𝑇) ∈ ℝ ∧ (𝐴 + 𝑇) ≤ (𝑧 + 𝑇) ∧ (𝑧 + 𝑇) ≤ (𝐵 + 𝑇)))
92913adant3 1127 . . . . . . . . . . . . . . 15 ((𝜑𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑥 = (𝑧 + 𝑇)) → ((𝑧 + 𝑇) ∈ ℝ ∧ (𝐴 + 𝑇) ≤ (𝑧 + 𝑇) ∧ (𝑧 + 𝑇) ≤ (𝐵 + 𝑇)))
9383ad2ant1 1128 . . . . . . . . . . . . . . . 16 ((𝜑𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑥 = (𝑧 + 𝑇)) → (𝐴 + 𝑇) ∈ ℝ)
9493ad2ant1 1128 . . . . . . . . . . . . . . . 16 ((𝜑𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑥 = (𝑧 + 𝑇)) → (𝐵 + 𝑇) ∈ ℝ)
95 elicc2 12452 . . . . . . . . . . . . . . . 16 (((𝐴 + 𝑇) ∈ ℝ ∧ (𝐵 + 𝑇) ∈ ℝ) → ((𝑧 + 𝑇) ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇)) ↔ ((𝑧 + 𝑇) ∈ ℝ ∧ (𝐴 + 𝑇) ≤ (𝑧 + 𝑇) ∧ (𝑧 + 𝑇) ≤ (𝐵 + 𝑇))))
9693, 94, 95syl2anc 696 . . . . . . . . . . . . . . 15 ((𝜑𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑥 = (𝑧 + 𝑇)) → ((𝑧 + 𝑇) ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇)) ↔ ((𝑧 + 𝑇) ∈ ℝ ∧ (𝐴 + 𝑇) ≤ (𝑧 + 𝑇) ∧ (𝑧 + 𝑇) ≤ (𝐵 + 𝑇))))
9792, 96mpbird 247 . . . . . . . . . . . . . 14 ((𝜑𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑥 = (𝑧 + 𝑇)) → (𝑧 + 𝑇) ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇)))
9880, 97eqeltrd 2840 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ (𝐴[,]𝐵) ∧ 𝑥 = (𝑧 + 𝑇)) → 𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇)))
99983exp 1113 . . . . . . . . . . . 12 (𝜑 → (𝑧 ∈ (𝐴[,]𝐵) → (𝑥 = (𝑧 + 𝑇) → 𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇)))))
10099adantr 472 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ ∃𝑧 ∈ (𝐴[,]𝐵)𝑥 = (𝑧 + 𝑇))) → (𝑧 ∈ (𝐴[,]𝐵) → (𝑥 = (𝑧 + 𝑇) → 𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇)))))
10178, 79, 100rexlimd 3165 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ ∃𝑧 ∈ (𝐴[,]𝐵)𝑥 = (𝑧 + 𝑇))) → (∃𝑧 ∈ (𝐴[,]𝐵)𝑥 = (𝑧 + 𝑇) → 𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))))
10273, 101mpd 15 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ ∃𝑧 ∈ (𝐴[,]𝐵)𝑥 = (𝑧 + 𝑇))) → 𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇)))
10372, 102sylan2b 493 . . . . . . . 8 ((𝜑𝑥 ∈ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴[,]𝐵)𝑤 = (𝑧 + 𝑇)}) → 𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇)))
10416recnd 10281 . . . . . . . . 9 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → 𝑥 ∈ ℂ)
1051adantr 472 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → 𝐴 ∈ ℝ)
1062adantr 472 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → 𝐵 ∈ ℝ)
1074adantr 472 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → 𝑇 ∈ ℝ)
10816, 107resubcld 10671 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → (𝑥𝑇) ∈ ℝ)
1091recnd 10281 . . . . . . . . . . . . . . 15 (𝜑𝐴 ∈ ℂ)
110109, 21pncand 10606 . . . . . . . . . . . . . 14 (𝜑 → ((𝐴 + 𝑇) − 𝑇) = 𝐴)
111110eqcomd 2767 . . . . . . . . . . . . 13 (𝜑𝐴 = ((𝐴 + 𝑇) − 𝑇))
112111adantr 472 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → 𝐴 = ((𝐴 + 𝑇) − 𝑇))
113 elicc2 12452 . . . . . . . . . . . . . . . 16 (((𝐴 + 𝑇) ∈ ℝ ∧ (𝐵 + 𝑇) ∈ ℝ) → (𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇)) ↔ (𝑥 ∈ ℝ ∧ (𝐴 + 𝑇) ≤ 𝑥𝑥 ≤ (𝐵 + 𝑇))))
11412, 13, 113syl2anc 696 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → (𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇)) ↔ (𝑥 ∈ ℝ ∧ (𝐴 + 𝑇) ≤ 𝑥𝑥 ≤ (𝐵 + 𝑇))))
11514, 114mpbid 222 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → (𝑥 ∈ ℝ ∧ (𝐴 + 𝑇) ≤ 𝑥𝑥 ≤ (𝐵 + 𝑇)))
116115simp2d 1138 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → (𝐴 + 𝑇) ≤ 𝑥)
11712, 16, 107, 116lesub1dd 10856 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → ((𝐴 + 𝑇) − 𝑇) ≤ (𝑥𝑇))
118112, 117eqbrtrd 4827 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → 𝐴 ≤ (𝑥𝑇))
119115simp3d 1139 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → 𝑥 ≤ (𝐵 + 𝑇))
12016, 13, 107, 119lesub1dd 10856 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → (𝑥𝑇) ≤ ((𝐵 + 𝑇) − 𝑇))
1212recnd 10281 . . . . . . . . . . . . . 14 (𝜑𝐵 ∈ ℂ)
122121, 21pncand 10606 . . . . . . . . . . . . 13 (𝜑 → ((𝐵 + 𝑇) − 𝑇) = 𝐵)
123122adantr 472 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → ((𝐵 + 𝑇) − 𝑇) = 𝐵)
124120, 123breqtrd 4831 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → (𝑥𝑇) ≤ 𝐵)
125105, 106, 108, 118, 124eliccd 40248 . . . . . . . . . 10 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → (𝑥𝑇) ∈ (𝐴[,]𝐵))
12621adantr 472 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → 𝑇 ∈ ℂ)
127104, 126npcand 10609 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → ((𝑥𝑇) + 𝑇) = 𝑥)
128127eqcomd 2767 . . . . . . . . . 10 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → 𝑥 = ((𝑥𝑇) + 𝑇))
129 oveq1 6822 . . . . . . . . . . . 12 (𝑧 = (𝑥𝑇) → (𝑧 + 𝑇) = ((𝑥𝑇) + 𝑇))
130129eqeq2d 2771 . . . . . . . . . . 11 (𝑧 = (𝑥𝑇) → (𝑥 = (𝑧 + 𝑇) ↔ 𝑥 = ((𝑥𝑇) + 𝑇)))
131130rspcev 3450 . . . . . . . . . 10 (((𝑥𝑇) ∈ (𝐴[,]𝐵) ∧ 𝑥 = ((𝑥𝑇) + 𝑇)) → ∃𝑧 ∈ (𝐴[,]𝐵)𝑥 = (𝑧 + 𝑇))
132125, 128, 131syl2anc 696 . . . . . . . . 9 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → ∃𝑧 ∈ (𝐴[,]𝐵)𝑥 = (𝑧 + 𝑇))
133104, 132, 72sylanbrc 701 . . . . . . . 8 ((𝜑𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) → 𝑥 ∈ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴[,]𝐵)𝑤 = (𝑧 + 𝑇)})
134103, 133impbida 913 . . . . . . 7 (𝜑 → (𝑥 ∈ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴[,]𝐵)𝑤 = (𝑧 + 𝑇)} ↔ 𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))))
135134eqrdv 2759 . . . . . 6 (𝜑 → {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴[,]𝐵)𝑤 = (𝑧 + 𝑇)} = ((𝐴 + 𝑇)[,](𝐵 + 𝑇)))
136135reseq2d 5552 . . . . 5 (𝜑 → (𝐹 ↾ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴[,]𝐵)𝑤 = (𝑧 + 𝑇)}) = (𝐹 ↾ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))))
137135, 68eqsstr3d 3782 . . . . . 6 (𝜑 → ((𝐴 + 𝑇)[,](𝐵 + 𝑇)) ⊆ dom 𝐹)
13855, 137feqresmpt 6414 . . . . 5 (𝜑 → (𝐹 ↾ ((𝐴 + 𝑇)[,](𝐵 + 𝑇))) = (𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇)) ↦ (𝐹𝑥)))
139136, 138eqtr2d 2796 . . . 4 (𝜑 → (𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇)) ↦ (𝐹𝑥)) = (𝐹 ↾ {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴[,]𝐵)𝑤 = (𝑧 + 𝑇)}))
1401, 2, 4iccshift 40266 . . . . 5 (𝜑 → ((𝐴 + 𝑇)[,](𝐵 + 𝑇)) = {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴[,]𝐵)𝑤 = (𝑧 + 𝑇)})
141140oveq1d 6830 . . . 4 (𝜑 → (((𝐴 + 𝑇)[,](𝐵 + 𝑇))–cn→ℂ) = ({𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴[,]𝐵)𝑤 = (𝑧 + 𝑇)}–cn→ℂ))
14271, 139, 1413eltr4d 2855 . . 3 (𝜑 → (𝑥 ∈ ((𝐴 + 𝑇)[,](𝐵 + 𝑇)) ↦ (𝐹𝑥)) ∈ (((𝐴 + 𝑇)[,](𝐵 + 𝑇))–cn→ℂ))
143 ioosscn 40238 . . . . . 6 (𝐴(,)𝐵) ⊆ ℂ
144143a1i 11 . . . . 5 (𝜑 → (𝐴(,)𝐵) ⊆ ℂ)
145 1cnd 10269 . . . . 5 (𝜑 → 1 ∈ ℂ)
146 ssid 3766 . . . . . 6 ℂ ⊆ ℂ
147146a1i 11 . . . . 5 (𝜑 → ℂ ⊆ ℂ)
148144, 145, 147constcncfg 40606 . . . 4 (𝜑 → (𝑦 ∈ (𝐴(,)𝐵) ↦ 1) ∈ ((𝐴(,)𝐵)–cn→ℂ))
149 fconstmpt 5321 . . . . 5 ((𝐴(,)𝐵) × {1}) = (𝑦 ∈ (𝐴(,)𝐵) ↦ 1)
150 ioombl 23554 . . . . . . 7 (𝐴(,)𝐵) ∈ dom vol
151150a1i 11 . . . . . 6 (𝜑 → (𝐴(,)𝐵) ∈ dom vol)
152 ioovolcl 23559 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (vol‘(𝐴(,)𝐵)) ∈ ℝ)
1531, 2, 152syl2anc 696 . . . . . 6 (𝜑 → (vol‘(𝐴(,)𝐵)) ∈ ℝ)
154 iblconst 23804 . . . . . 6 (((𝐴(,)𝐵) ∈ dom vol ∧ (vol‘(𝐴(,)𝐵)) ∈ ℝ ∧ 1 ∈ ℂ) → ((𝐴(,)𝐵) × {1}) ∈ 𝐿1)
155151, 153, 145, 154syl3anc 1477 . . . . 5 (𝜑 → ((𝐴(,)𝐵) × {1}) ∈ 𝐿1)
156149, 155syl5eqelr 2845 . . . 4 (𝜑 → (𝑦 ∈ (𝐴(,)𝐵) ↦ 1) ∈ 𝐿1)
157148, 156elind 3942 . . 3 (𝜑 → (𝑦 ∈ (𝐴(,)𝐵) ↦ 1) ∈ (((𝐴(,)𝐵)–cn→ℂ) ∩ 𝐿1))
15824resmptd 5611 . . . . . . 7 (𝜑 → ((𝑦 ∈ ℝ ↦ (𝑦 + 𝑇)) ↾ (𝐴[,]𝐵)) = (𝑦 ∈ (𝐴[,]𝐵) ↦ (𝑦 + 𝑇)))
159158eqcomd 2767 . . . . . 6 (𝜑 → (𝑦 ∈ (𝐴[,]𝐵) ↦ (𝑦 + 𝑇)) = ((𝑦 ∈ ℝ ↦ (𝑦 + 𝑇)) ↾ (𝐴[,]𝐵)))
160159oveq2d 6831 . . . . 5 (𝜑 → (ℝ D (𝑦 ∈ (𝐴[,]𝐵) ↦ (𝑦 + 𝑇))) = (ℝ D ((𝑦 ∈ ℝ ↦ (𝑦 + 𝑇)) ↾ (𝐴[,]𝐵))))
16125a1i 11 . . . . . 6 (𝜑 → ℝ ⊆ ℂ)
162161sselda 3745 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ) → 𝑦 ∈ ℂ)
16321adantr 472 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ) → 𝑇 ∈ ℂ)
164162, 163addcld 10272 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → (𝑦 + 𝑇) ∈ ℂ)
165 eqid 2761 . . . . . . 7 (𝑦 ∈ ℝ ↦ (𝑦 + 𝑇)) = (𝑦 ∈ ℝ ↦ (𝑦 + 𝑇))
166164, 165fmptd 6550 . . . . . 6 (𝜑 → (𝑦 ∈ ℝ ↦ (𝑦 + 𝑇)):ℝ⟶ℂ)
167 ssid 3766 . . . . . . 7 ℝ ⊆ ℝ
168167a1i 11 . . . . . 6 (𝜑 → ℝ ⊆ ℝ)
169 eqid 2761 . . . . . . 7 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
170169tgioo2 22828 . . . . . . 7 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
171169, 170dvres 23895 . . . . . 6 (((ℝ ⊆ ℂ ∧ (𝑦 ∈ ℝ ↦ (𝑦 + 𝑇)):ℝ⟶ℂ) ∧ (ℝ ⊆ ℝ ∧ (𝐴[,]𝐵) ⊆ ℝ)) → (ℝ D ((𝑦 ∈ ℝ ↦ (𝑦 + 𝑇)) ↾ (𝐴[,]𝐵))) = ((ℝ D (𝑦 ∈ ℝ ↦ (𝑦 + 𝑇))) ↾ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))))
172161, 166, 168, 24, 171syl22anc 1478 . . . . 5 (𝜑 → (ℝ D ((𝑦 ∈ ℝ ↦ (𝑦 + 𝑇)) ↾ (𝐴[,]𝐵))) = ((ℝ D (𝑦 ∈ ℝ ↦ (𝑦 + 𝑇))) ↾ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))))
173160, 172eqtrd 2795 . . . 4 (𝜑 → (ℝ D (𝑦 ∈ (𝐴[,]𝐵) ↦ (𝑦 + 𝑇))) = ((ℝ D (𝑦 ∈ ℝ ↦ (𝑦 + 𝑇))) ↾ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))))
174 iccntr 22846 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵))
1751, 2, 174syl2anc 696 . . . . 5 (𝜑 → ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵)) = (𝐴(,)𝐵))
176175reseq2d 5552 . . . 4 (𝜑 → ((ℝ D (𝑦 ∈ ℝ ↦ (𝑦 + 𝑇))) ↾ ((int‘(topGen‘ran (,)))‘(𝐴[,]𝐵))) = ((ℝ D (𝑦 ∈ ℝ ↦ (𝑦 + 𝑇))) ↾ (𝐴(,)𝐵)))
177 reelprrecn 10241 . . . . . . . 8 ℝ ∈ {ℝ, ℂ}
178177a1i 11 . . . . . . 7 (𝜑 → ℝ ∈ {ℝ, ℂ})
179 1cnd 10269 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → 1 ∈ ℂ)
180178dvmptid 23940 . . . . . . 7 (𝜑 → (ℝ D (𝑦 ∈ ℝ ↦ 𝑦)) = (𝑦 ∈ ℝ ↦ 1))
181 0cnd 10246 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → 0 ∈ ℂ)
182178, 21dvmptc 23941 . . . . . . 7 (𝜑 → (ℝ D (𝑦 ∈ ℝ ↦ 𝑇)) = (𝑦 ∈ ℝ ↦ 0))
183178, 162, 179, 180, 163, 181, 182dvmptadd 23943 . . . . . 6 (𝜑 → (ℝ D (𝑦 ∈ ℝ ↦ (𝑦 + 𝑇))) = (𝑦 ∈ ℝ ↦ (1 + 0)))
184183reseq1d 5551 . . . . 5 (𝜑 → ((ℝ D (𝑦 ∈ ℝ ↦ (𝑦 + 𝑇))) ↾ (𝐴(,)𝐵)) = ((𝑦 ∈ ℝ ↦ (1 + 0)) ↾ (𝐴(,)𝐵)))
185 ioossre 12449 . . . . . . 7 (𝐴(,)𝐵) ⊆ ℝ
186185a1i 11 . . . . . 6 (𝜑 → (𝐴(,)𝐵) ⊆ ℝ)
187186resmptd 5611 . . . . 5 (𝜑 → ((𝑦 ∈ ℝ ↦ (1 + 0)) ↾ (𝐴(,)𝐵)) = (𝑦 ∈ (𝐴(,)𝐵) ↦ (1 + 0)))
188 1p0e1 11346 . . . . . . 7 (1 + 0) = 1
189188mpteq2i 4894 . . . . . 6 (𝑦 ∈ (𝐴(,)𝐵) ↦ (1 + 0)) = (𝑦 ∈ (𝐴(,)𝐵) ↦ 1)
190189a1i 11 . . . . 5 (𝜑 → (𝑦 ∈ (𝐴(,)𝐵) ↦ (1 + 0)) = (𝑦 ∈ (𝐴(,)𝐵) ↦ 1))
191184, 187, 1903eqtrd 2799 . . . 4 (𝜑 → ((ℝ D (𝑦 ∈ ℝ ↦ (𝑦 + 𝑇))) ↾ (𝐴(,)𝐵)) = (𝑦 ∈ (𝐴(,)𝐵) ↦ 1))
192173, 176, 1913eqtrd 2799 . . 3 (𝜑 → (ℝ D (𝑦 ∈ (𝐴[,]𝐵) ↦ (𝑦 + 𝑇))) = (𝑦 ∈ (𝐴(,)𝐵) ↦ 1))
193 fveq2 6354 . . 3 (𝑥 = (𝑦 + 𝑇) → (𝐹𝑥) = (𝐹‘(𝑦 + 𝑇)))
194 oveq1 6822 . . 3 (𝑦 = 𝐴 → (𝑦 + 𝑇) = (𝐴 + 𝑇))
195 oveq1 6822 . . 3 (𝑦 = 𝐵 → (𝑦 + 𝑇) = (𝐵 + 𝑇))
1961, 2, 5, 45, 142, 157, 192, 193, 194, 195, 8, 9itgsubsticc 40714 . 2 (𝜑 → ⨜[(𝐴 + 𝑇) → (𝐵 + 𝑇)](𝐹𝑥) d𝑥 = ⨜[𝐴𝐵]((𝐹‘(𝑦 + 𝑇)) · 1) d𝑦)
1975ditgpos 23840 . . 3 (𝜑 → ⨜[𝐴𝐵]((𝐹‘(𝑦 + 𝑇)) · 1) d𝑦 = ∫(𝐴(,)𝐵)((𝐹‘(𝑦 + 𝑇)) · 1) d𝑦)
19810adantr 472 . . . . . 6 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → 𝐹:ℝ⟶ℂ)
199198, 33ffvelrnd 6525 . . . . 5 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → (𝐹‘(𝑦 + 𝑇)) ∈ ℂ)
200 1cnd 10269 . . . . 5 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → 1 ∈ ℂ)
201199, 200mulcld 10273 . . . 4 ((𝜑𝑦 ∈ (𝐴[,]𝐵)) → ((𝐹‘(𝑦 + 𝑇)) · 1) ∈ ℂ)
2021, 2, 201itgioo 23802 . . 3 (𝜑 → ∫(𝐴(,)𝐵)((𝐹‘(𝑦 + 𝑇)) · 1) d𝑦 = ∫(𝐴[,]𝐵)((𝐹‘(𝑦 + 𝑇)) · 1) d𝑦)
203 oveq1 6822 . . . . . . 7 (𝑦 = 𝑥 → (𝑦 + 𝑇) = (𝑥 + 𝑇))
204203fveq2d 6358 . . . . . 6 (𝑦 = 𝑥 → (𝐹‘(𝑦 + 𝑇)) = (𝐹‘(𝑥 + 𝑇)))
205204oveq1d 6830 . . . . 5 (𝑦 = 𝑥 → ((𝐹‘(𝑦 + 𝑇)) · 1) = ((𝐹‘(𝑥 + 𝑇)) · 1))
206205cbvitgv 23763 . . . 4 ∫(𝐴[,]𝐵)((𝐹‘(𝑦 + 𝑇)) · 1) d𝑦 = ∫(𝐴[,]𝐵)((𝐹‘(𝑥 + 𝑇)) · 1) d𝑥
20710adantr 472 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝐹:ℝ⟶ℂ)
20824sselda 3745 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ ℝ)
2094adantr 472 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝑇 ∈ ℝ)
210208, 209readdcld 10282 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝑥 + 𝑇) ∈ ℝ)
211207, 210ffvelrnd 6525 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹‘(𝑥 + 𝑇)) ∈ ℂ)
212211mulid1d 10270 . . . . . 6 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → ((𝐹‘(𝑥 + 𝑇)) · 1) = (𝐹‘(𝑥 + 𝑇)))
213212, 69eqtrd 2795 . . . . 5 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → ((𝐹‘(𝑥 + 𝑇)) · 1) = (𝐹𝑥))
214213itgeq2dv 23768 . . . 4 (𝜑 → ∫(𝐴[,]𝐵)((𝐹‘(𝑥 + 𝑇)) · 1) d𝑥 = ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥)
215206, 214syl5eq 2807 . . 3 (𝜑 → ∫(𝐴[,]𝐵)((𝐹‘(𝑦 + 𝑇)) · 1) d𝑦 = ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥)
216197, 202, 2153eqtrd 2799 . 2 (𝜑 → ⨜[𝐴𝐵]((𝐹‘(𝑦 + 𝑇)) · 1) d𝑦 = ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥)
21719, 196, 2163eqtrd 2799 1 (𝜑 → ∫((𝐴 + 𝑇)[,](𝐵 + 𝑇))(𝐹𝑥) d𝑥 = ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1072   = wceq 1632  wcel 2140  wral 3051  wrex 3052  {crab 3055  wss 3716  {csn 4322  {cpr 4324   class class class wbr 4805  cmpt 4882   × cxp 5265  dom cdm 5267  ran crn 5268  cres 5269  wf 6046  cfv 6050  (class class class)co 6815  cc 10147  cr 10148  0cc0 10149  1c1 10150   + caddc 10152   · cmul 10154  cle 10288  cmin 10479  +crp 12046  (,)cioo 12389  [,]cicc 12392  TopOpenctopn 16305  topGenctg 16321  fldccnfld 19969  intcnt 21044  cnccncf 22901  volcvol 23453  𝐿1cibl 23606  citg 23607  cdit 23830   D cdv 23847
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1989  ax-6 2055  ax-7 2091  ax-8 2142  ax-9 2149  ax-10 2169  ax-11 2184  ax-12 2197  ax-13 2392  ax-ext 2741  ax-rep 4924  ax-sep 4934  ax-nul 4942  ax-pow 4993  ax-pr 5056  ax-un 7116  ax-inf2 8714  ax-cc 9470  ax-cnex 10205  ax-resscn 10206  ax-1cn 10207  ax-icn 10208  ax-addcl 10209  ax-addrcl 10210  ax-mulcl 10211  ax-mulrcl 10212  ax-mulcom 10213  ax-addass 10214  ax-mulass 10215  ax-distr 10216  ax-i2m1 10217  ax-1ne0 10218  ax-1rid 10219  ax-rnegex 10220  ax-rrecex 10221  ax-cnre 10222  ax-pre-lttri 10223  ax-pre-lttrn 10224  ax-pre-ltadd 10225  ax-pre-mulgt0 10226  ax-pre-sup 10227  ax-addf 10228  ax-mulf 10229
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-fal 1638  df-ex 1854  df-nf 1859  df-sb 2048  df-eu 2612  df-mo 2613  df-clab 2748  df-cleq 2754  df-clel 2757  df-nfc 2892  df-ne 2934  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3343  df-sbc 3578  df-csb 3676  df-dif 3719  df-un 3721  df-in 3723  df-ss 3730  df-pss 3732  df-nul 4060  df-if 4232  df-pw 4305  df-sn 4323  df-pr 4325  df-tp 4327  df-op 4329  df-uni 4590  df-int 4629  df-iun 4675  df-iin 4676  df-disj 4774  df-br 4806  df-opab 4866  df-mpt 4883  df-tr 4906  df-id 5175  df-eprel 5180  df-po 5188  df-so 5189  df-fr 5226  df-se 5227  df-we 5228  df-xp 5273  df-rel 5274  df-cnv 5275  df-co 5276  df-dm 5277  df-rn 5278  df-res 5279  df-ima 5280  df-pred 5842  df-ord 5888  df-on 5889  df-lim 5890  df-suc 5891  df-iota 6013  df-fun 6052  df-fn 6053  df-f 6054  df-f1 6055  df-fo 6056  df-f1o 6057  df-fv 6058  df-isom 6059  df-riota 6776  df-ov 6818  df-oprab 6819  df-mpt2 6820  df-of 7064  df-ofr 7065  df-om 7233  df-1st 7335  df-2nd 7336  df-supp 7466  df-wrecs 7578  df-recs 7639  df-rdg 7677  df-1o 7731  df-2o 7732  df-oadd 7735  df-omul 7736  df-er 7914  df-map 8028  df-pm 8029  df-ixp 8078  df-en 8125  df-dom 8126  df-sdom 8127  df-fin 8128  df-fsupp 8444  df-fi 8485  df-sup 8516  df-inf 8517  df-oi 8583  df-card 8976  df-acn 8979  df-cda 9203  df-pnf 10289  df-mnf 10290  df-xr 10291  df-ltxr 10292  df-le 10293  df-sub 10481  df-neg 10482  df-div 10898  df-nn 11234  df-2 11292  df-3 11293  df-4 11294  df-5 11295  df-6 11296  df-7 11297  df-8 11298  df-9 11299  df-n0 11506  df-z 11591  df-dec 11707  df-uz 11901  df-q 12003  df-rp 12047  df-xneg 12160  df-xadd 12161  df-xmul 12162  df-ioo 12393  df-ioc 12394  df-ico 12395  df-icc 12396  df-fz 12541  df-fzo 12681  df-fl 12808  df-mod 12884  df-seq 13017  df-exp 13076  df-hash 13333  df-cj 14059  df-re 14060  df-im 14061  df-sqrt 14195  df-abs 14196  df-limsup 14422  df-clim 14439  df-rlim 14440  df-sum 14637  df-struct 16082  df-ndx 16083  df-slot 16084  df-base 16086  df-sets 16087  df-ress 16088  df-plusg 16177  df-mulr 16178  df-starv 16179  df-sca 16180  df-vsca 16181  df-ip 16182  df-tset 16183  df-ple 16184  df-ds 16187  df-unif 16188  df-hom 16189  df-cco 16190  df-rest 16306  df-topn 16307  df-0g 16325  df-gsum 16326  df-topgen 16327  df-pt 16328  df-prds 16331  df-xrs 16385  df-qtop 16390  df-imas 16391  df-xps 16393  df-mre 16469  df-mrc 16470  df-acs 16472  df-mgm 17464  df-sgrp 17506  df-mnd 17517  df-submnd 17558  df-mulg 17763  df-cntz 17971  df-cmn 18416  df-psmet 19961  df-xmet 19962  df-met 19963  df-bl 19964  df-mopn 19965  df-fbas 19966  df-fg 19967  df-cnfld 19970  df-top 20922  df-topon 20939  df-topsp 20960  df-bases 20973  df-cld 21046  df-ntr 21047  df-cls 21048  df-nei 21125  df-lp 21163  df-perf 21164  df-cn 21254  df-cnp 21255  df-haus 21342  df-cmp 21413  df-tx 21588  df-hmeo 21781  df-fil 21872  df-fm 21964  df-flim 21965  df-flf 21966  df-xms 22347  df-ms 22348  df-tms 22349  df-cncf 22903  df-ovol 23454  df-vol 23455  df-mbf 23608  df-itg1 23609  df-itg2 23610  df-ibl 23611  df-itg 23612  df-0p 23657  df-ditg 23831  df-limc 23850  df-dv 23851
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator