Mathbox for Brendan Leahy < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itgmulc2nclem1 Structured version   Visualization version   GIF version

Theorem itgmulc2nclem1 33708
 Description: Lemma for itgmulc2nc 33710; cf. itgmulc2lem1 23718. (Contributed by Brendan Leahy, 17-Nov-2017.)
Hypotheses
Ref Expression
itgmulc2nc.1 (𝜑𝐶 ∈ ℂ)
itgmulc2nc.2 ((𝜑𝑥𝐴) → 𝐵𝑉)
itgmulc2nc.3 (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)
itgmulc2nc.m (𝜑 → (𝑥𝐴 ↦ (𝐶 · 𝐵)) ∈ MblFn)
itgmulc2nc.4 (𝜑𝐶 ∈ ℝ)
itgmulc2nc.5 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
itgmulc2nc.6 (𝜑 → 0 ≤ 𝐶)
itgmulc2nc.7 ((𝜑𝑥𝐴) → 0 ≤ 𝐵)
Assertion
Ref Expression
itgmulc2nclem1 (𝜑 → (𝐶 · ∫𝐴𝐵 d𝑥) = ∫𝐴(𝐶 · 𝐵) d𝑥)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝜑,𝑥   𝑥,𝑉
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem itgmulc2nclem1
StepHypRef Expression
1 itgmulc2nc.5 . . . . . . . 8 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
2 itgmulc2nc.7 . . . . . . . 8 ((𝜑𝑥𝐴) → 0 ≤ 𝐵)
3 elrege0 12392 . . . . . . . 8 (𝐵 ∈ (0[,)+∞) ↔ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵))
41, 2, 3sylanbrc 701 . . . . . . 7 ((𝜑𝑥𝐴) → 𝐵 ∈ (0[,)+∞))
5 0e0icopnf 12396 . . . . . . . 8 0 ∈ (0[,)+∞)
65a1i 11 . . . . . . 7 ((𝜑 ∧ ¬ 𝑥𝐴) → 0 ∈ (0[,)+∞))
74, 6ifclda 4228 . . . . . 6 (𝜑 → if(𝑥𝐴, 𝐵, 0) ∈ (0[,)+∞))
87adantr 472 . . . . 5 ((𝜑𝑥 ∈ ℝ) → if(𝑥𝐴, 𝐵, 0) ∈ (0[,)+∞))
9 eqid 2724 . . . . 5 (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))
108, 9fmptd 6500 . . . 4 (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)):ℝ⟶(0[,)+∞))
11 itgmulc2nc.3 . . . . . 6 (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)
121, 2iblpos 23679 . . . . . 6 (𝜑 → ((𝑥𝐴𝐵) ∈ 𝐿1 ↔ ((𝑥𝐴𝐵) ∈ MblFn ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ)))
1311, 12mpbid 222 . . . . 5 (𝜑 → ((𝑥𝐴𝐵) ∈ MblFn ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ))
1413simprd 482 . . . 4 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ)
15 itgmulc2nc.4 . . . . 5 (𝜑𝐶 ∈ ℝ)
16 itgmulc2nc.6 . . . . 5 (𝜑 → 0 ≤ 𝐶)
17 elrege0 12392 . . . . 5 (𝐶 ∈ (0[,)+∞) ↔ (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶))
1815, 16, 17sylanbrc 701 . . . 4 (𝜑𝐶 ∈ (0[,)+∞))
1910, 14, 18itg2mulc 23634 . . 3 (𝜑 → (∫2‘((ℝ × {𝐶}) ∘𝑓 · (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)))) = (𝐶 · (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)))))
20 reex 10140 . . . . . . 7 ℝ ∈ V
2120a1i 11 . . . . . 6 (𝜑 → ℝ ∈ V)
22 itgmulc2nc.1 . . . . . . 7 (𝜑𝐶 ∈ ℂ)
2322adantr 472 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → 𝐶 ∈ ℂ)
24 fconstmpt 5272 . . . . . . 7 (ℝ × {𝐶}) = (𝑥 ∈ ℝ ↦ 𝐶)
2524a1i 11 . . . . . 6 (𝜑 → (ℝ × {𝐶}) = (𝑥 ∈ ℝ ↦ 𝐶))
26 eqidd 2725 . . . . . 6 (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)))
2721, 23, 8, 25, 26offval2 7031 . . . . 5 (𝜑 → ((ℝ × {𝐶}) ∘𝑓 · (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) = (𝑥 ∈ ℝ ↦ (𝐶 · if(𝑥𝐴, 𝐵, 0))))
28 ovif2 6855 . . . . . . 7 (𝐶 · if(𝑥𝐴, 𝐵, 0)) = if(𝑥𝐴, (𝐶 · 𝐵), (𝐶 · 0))
2922mul01d 10348 . . . . . . . . 9 (𝜑 → (𝐶 · 0) = 0)
3029adantr 472 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → (𝐶 · 0) = 0)
3130ifeq2d 4213 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → if(𝑥𝐴, (𝐶 · 𝐵), (𝐶 · 0)) = if(𝑥𝐴, (𝐶 · 𝐵), 0))
3228, 31syl5eq 2770 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → (𝐶 · if(𝑥𝐴, 𝐵, 0)) = if(𝑥𝐴, (𝐶 · 𝐵), 0))
3332mpteq2dva 4852 . . . . 5 (𝜑 → (𝑥 ∈ ℝ ↦ (𝐶 · if(𝑥𝐴, 𝐵, 0))) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (𝐶 · 𝐵), 0)))
3427, 33eqtrd 2758 . . . 4 (𝜑 → ((ℝ × {𝐶}) ∘𝑓 · (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (𝐶 · 𝐵), 0)))
3534fveq2d 6308 . . 3 (𝜑 → (∫2‘((ℝ × {𝐶}) ∘𝑓 · (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)))) = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (𝐶 · 𝐵), 0))))
3619, 35eqtr3d 2760 . 2 (𝜑 → (𝐶 · (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)))) = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (𝐶 · 𝐵), 0))))
371, 11, 2itgposval 23682 . . 3 (𝜑 → ∫𝐴𝐵 d𝑥 = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))))
3837oveq2d 6781 . 2 (𝜑 → (𝐶 · ∫𝐴𝐵 d𝑥) = (𝐶 · (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)))))
3915adantr 472 . . . 4 ((𝜑𝑥𝐴) → 𝐶 ∈ ℝ)
4039, 1remulcld 10183 . . 3 ((𝜑𝑥𝐴) → (𝐶 · 𝐵) ∈ ℝ)
41 itgmulc2nc.2 . . . 4 ((𝜑𝑥𝐴) → 𝐵𝑉)
42 itgmulc2nc.m . . . 4 (𝜑 → (𝑥𝐴 ↦ (𝐶 · 𝐵)) ∈ MblFn)
4322, 41, 11, 42iblmulc2nc 33707 . . 3 (𝜑 → (𝑥𝐴 ↦ (𝐶 · 𝐵)) ∈ 𝐿1)
4416adantr 472 . . . 4 ((𝜑𝑥𝐴) → 0 ≤ 𝐶)
4539, 1, 44, 2mulge0d 10717 . . 3 ((𝜑𝑥𝐴) → 0 ≤ (𝐶 · 𝐵))
4640, 43, 45itgposval 23682 . 2 (𝜑 → ∫𝐴(𝐶 · 𝐵) d𝑥 = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (𝐶 · 𝐵), 0))))
4736, 38, 463eqtr4d 2768 1 (𝜑 → (𝐶 · ∫𝐴𝐵 d𝑥) = ∫𝐴(𝐶 · 𝐵) d𝑥)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 383   = wceq 1596   ∈ wcel 2103  Vcvv 3304  ifcif 4194  {csn 4285   class class class wbr 4760   ↦ cmpt 4837   × cxp 5216  ‘cfv 6001  (class class class)co 6765   ∘𝑓 cof 7012  ℂcc 10047  ℝcr 10048  0cc0 10049   · cmul 10054  +∞cpnf 10184   ≤ cle 10188  [,)cico 12291  MblFncmbf 23503  ∫2citg2 23505  𝐿1cibl 23506  ∫citg 23507 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1835  ax-4 1850  ax-5 1952  ax-6 2018  ax-7 2054  ax-8 2105  ax-9 2112  ax-10 2132  ax-11 2147  ax-12 2160  ax-13 2355  ax-ext 2704  ax-rep 4879  ax-sep 4889  ax-nul 4897  ax-pow 4948  ax-pr 5011  ax-un 7066  ax-inf2 8651  ax-cnex 10105  ax-resscn 10106  ax-1cn 10107  ax-icn 10108  ax-addcl 10109  ax-addrcl 10110  ax-mulcl 10111  ax-mulrcl 10112  ax-mulcom 10113  ax-addass 10114  ax-mulass 10115  ax-distr 10116  ax-i2m1 10117  ax-1ne0 10118  ax-1rid 10119  ax-rnegex 10120  ax-rrecex 10121  ax-cnre 10122  ax-pre-lttri 10123  ax-pre-lttrn 10124  ax-pre-ltadd 10125  ax-pre-mulgt0 10126  ax-pre-sup 10127  ax-addf 10128 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1599  df-fal 1602  df-ex 1818  df-nf 1823  df-sb 2011  df-eu 2575  df-mo 2576  df-clab 2711  df-cleq 2717  df-clel 2720  df-nfc 2855  df-ne 2897  df-nel 3000  df-ral 3019  df-rex 3020  df-reu 3021  df-rmo 3022  df-rab 3023  df-v 3306  df-sbc 3542  df-csb 3640  df-dif 3683  df-un 3685  df-in 3687  df-ss 3694  df-pss 3696  df-nul 4024  df-if 4195  df-pw 4268  df-sn 4286  df-pr 4288  df-tp 4290  df-op 4292  df-uni 4545  df-int 4584  df-iun 4630  df-disj 4729  df-br 4761  df-opab 4821  df-mpt 4838  df-tr 4861  df-id 5128  df-eprel 5133  df-po 5139  df-so 5140  df-fr 5177  df-se 5178  df-we 5179  df-xp 5224  df-rel 5225  df-cnv 5226  df-co 5227  df-dm 5228  df-rn 5229  df-res 5230  df-ima 5231  df-pred 5793  df-ord 5839  df-on 5840  df-lim 5841  df-suc 5842  df-iota 5964  df-fun 6003  df-fn 6004  df-f 6005  df-f1 6006  df-fo 6007  df-f1o 6008  df-fv 6009  df-isom 6010  df-riota 6726  df-ov 6768  df-oprab 6769  df-mpt2 6770  df-of 7014  df-ofr 7015  df-om 7183  df-1st 7285  df-2nd 7286  df-wrecs 7527  df-recs 7588  df-rdg 7626  df-1o 7680  df-2o 7681  df-oadd 7684  df-er 7862  df-map 7976  df-pm 7977  df-en 8073  df-dom 8074  df-sdom 8075  df-fin 8076  df-fi 8433  df-sup 8464  df-inf 8465  df-oi 8531  df-card 8878  df-cda 9103  df-pnf 10189  df-mnf 10190  df-xr 10191  df-ltxr 10192  df-le 10193  df-sub 10381  df-neg 10382  df-div 10798  df-nn 11134  df-2 11192  df-3 11193  df-4 11194  df-n0 11406  df-z 11491  df-uz 11801  df-q 11903  df-rp 11947  df-xneg 12060  df-xadd 12061  df-xmul 12062  df-ioo 12293  df-ico 12295  df-icc 12296  df-fz 12441  df-fzo 12581  df-fl 12708  df-mod 12784  df-seq 12917  df-exp 12976  df-hash 13233  df-cj 13959  df-re 13960  df-im 13961  df-sqrt 14095  df-abs 14096  df-clim 14339  df-sum 14537  df-rest 16206  df-topgen 16227  df-psmet 19861  df-xmet 19862  df-met 19863  df-bl 19864  df-mopn 19865  df-top 20822  df-topon 20839  df-bases 20873  df-cmp 21313  df-ovol 23354  df-vol 23355  df-mbf 23508  df-itg1 23509  df-itg2 23510  df-ibl 23511  df-itg 23512  df-0p 23557 This theorem is referenced by:  itgmulc2nclem2  33709
 Copyright terms: Public domain W3C validator