MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itgle Structured version   Visualization version   GIF version

Theorem itgle 23796
Description: Monotonicity of an integral. (Contributed by Mario Carneiro, 11-Aug-2014.)
Hypotheses
Ref Expression
itgle.1 (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)
itgle.2 (𝜑 → (𝑥𝐴𝐶) ∈ 𝐿1)
itgle.3 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
itgle.4 ((𝜑𝑥𝐴) → 𝐶 ∈ ℝ)
itgle.5 ((𝜑𝑥𝐴) → 𝐵𝐶)
Assertion
Ref Expression
itgle (𝜑 → ∫𝐴𝐵 d𝑥 ≤ ∫𝐴𝐶 d𝑥)
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)

Proof of Theorem itgle
StepHypRef Expression
1 itgle.1 . . . . 5 (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)
2 itgle.3 . . . . . 6 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
32iblrelem 23777 . . . . 5 (𝜑 → ((𝑥𝐴𝐵) ∈ 𝐿1 ↔ ((𝑥𝐴𝐵) ∈ MblFn ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0))) ∈ ℝ ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0))) ∈ ℝ)))
41, 3mpbid 222 . . . 4 (𝜑 → ((𝑥𝐴𝐵) ∈ MblFn ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0))) ∈ ℝ ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0))) ∈ ℝ))
54simp2d 1138 . . 3 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0))) ∈ ℝ)
6 itgle.2 . . . . 5 (𝜑 → (𝑥𝐴𝐶) ∈ 𝐿1)
7 itgle.4 . . . . . 6 ((𝜑𝑥𝐴) → 𝐶 ∈ ℝ)
87iblrelem 23777 . . . . 5 (𝜑 → ((𝑥𝐴𝐶) ∈ 𝐿1 ↔ ((𝑥𝐴𝐶) ∈ MblFn ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0))) ∈ ℝ ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝐶), -𝐶, 0))) ∈ ℝ)))
96, 8mpbid 222 . . . 4 (𝜑 → ((𝑥𝐴𝐶) ∈ MblFn ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0))) ∈ ℝ ∧ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝐶), -𝐶, 0))) ∈ ℝ))
109simp3d 1139 . . 3 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝐶), -𝐶, 0))) ∈ ℝ)
119simp2d 1138 . . 3 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0))) ∈ ℝ)
124simp3d 1139 . . 3 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0))) ∈ ℝ)
132ad2ant2r 800 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥𝐴 ∧ 0 ≤ 𝐵)) → 𝐵 ∈ ℝ)
1413rexrd 10302 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥𝐴 ∧ 0 ≤ 𝐵)) → 𝐵 ∈ ℝ*)
15 simprr 813 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥𝐴 ∧ 0 ≤ 𝐵)) → 0 ≤ 𝐵)
16 elxrge0 12495 . . . . . . 7 (𝐵 ∈ (0[,]+∞) ↔ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵))
1714, 15, 16sylanbrc 701 . . . . . 6 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥𝐴 ∧ 0 ≤ 𝐵)) → 𝐵 ∈ (0[,]+∞))
18 0e0iccpnf 12497 . . . . . . 7 0 ∈ (0[,]+∞)
1918a1i 11 . . . . . 6 (((𝜑𝑥 ∈ ℝ) ∧ ¬ (𝑥𝐴 ∧ 0 ≤ 𝐵)) → 0 ∈ (0[,]+∞))
2017, 19ifclda 4265 . . . . 5 ((𝜑𝑥 ∈ ℝ) → if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0) ∈ (0[,]+∞))
21 eqid 2761 . . . . 5 (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0))
2220, 21fmptd 6550 . . . 4 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0)):ℝ⟶(0[,]+∞))
237ad2ant2r 800 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥𝐴 ∧ 0 ≤ 𝐶)) → 𝐶 ∈ ℝ)
2423rexrd 10302 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥𝐴 ∧ 0 ≤ 𝐶)) → 𝐶 ∈ ℝ*)
25 simprr 813 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥𝐴 ∧ 0 ≤ 𝐶)) → 0 ≤ 𝐶)
26 elxrge0 12495 . . . . . . 7 (𝐶 ∈ (0[,]+∞) ↔ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶))
2724, 25, 26sylanbrc 701 . . . . . 6 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥𝐴 ∧ 0 ≤ 𝐶)) → 𝐶 ∈ (0[,]+∞))
2818a1i 11 . . . . . 6 (((𝜑𝑥 ∈ ℝ) ∧ ¬ (𝑥𝐴 ∧ 0 ≤ 𝐶)) → 0 ∈ (0[,]+∞))
2927, 28ifclda 4265 . . . . 5 ((𝜑𝑥 ∈ ℝ) → if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0) ∈ (0[,]+∞))
30 eqid 2761 . . . . 5 (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0))
3129, 30fmptd 6550 . . . 4 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0)):ℝ⟶(0[,]+∞))
32 0re 10253 . . . . . . . . . . . 12 0 ∈ ℝ
33 max1 12230 . . . . . . . . . . . 12 ((0 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 0 ≤ if(0 ≤ 𝐶, 𝐶, 0))
3432, 7, 33sylancr 698 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → 0 ≤ if(0 ≤ 𝐶, 𝐶, 0))
35 ifcl 4275 . . . . . . . . . . . . 13 ((𝐶 ∈ ℝ ∧ 0 ∈ ℝ) → if(0 ≤ 𝐶, 𝐶, 0) ∈ ℝ)
367, 32, 35sylancl 697 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → if(0 ≤ 𝐶, 𝐶, 0) ∈ ℝ)
37 itgle.5 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → 𝐵𝐶)
38 max2 12232 . . . . . . . . . . . . 13 ((0 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐶 ≤ if(0 ≤ 𝐶, 𝐶, 0))
3932, 7, 38sylancr 698 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → 𝐶 ≤ if(0 ≤ 𝐶, 𝐶, 0))
402, 7, 36, 37, 39letrd 10407 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → 𝐵 ≤ if(0 ≤ 𝐶, 𝐶, 0))
4132a1i 11 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → 0 ∈ ℝ)
42 maxle 12236 . . . . . . . . . . . 12 ((0 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ if(0 ≤ 𝐶, 𝐶, 0) ∈ ℝ) → (if(0 ≤ 𝐵, 𝐵, 0) ≤ if(0 ≤ 𝐶, 𝐶, 0) ↔ (0 ≤ if(0 ≤ 𝐶, 𝐶, 0) ∧ 𝐵 ≤ if(0 ≤ 𝐶, 𝐶, 0))))
4341, 2, 36, 42syl3anc 1477 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → (if(0 ≤ 𝐵, 𝐵, 0) ≤ if(0 ≤ 𝐶, 𝐶, 0) ↔ (0 ≤ if(0 ≤ 𝐶, 𝐶, 0) ∧ 𝐵 ≤ if(0 ≤ 𝐶, 𝐶, 0))))
4434, 40, 43mpbir2and 995 . . . . . . . . . 10 ((𝜑𝑥𝐴) → if(0 ≤ 𝐵, 𝐵, 0) ≤ if(0 ≤ 𝐶, 𝐶, 0))
45 iftrue 4237 . . . . . . . . . . 11 (𝑥𝐴 → if(𝑥𝐴, if(0 ≤ 𝐵, 𝐵, 0), 0) = if(0 ≤ 𝐵, 𝐵, 0))
4645adantl 473 . . . . . . . . . 10 ((𝜑𝑥𝐴) → if(𝑥𝐴, if(0 ≤ 𝐵, 𝐵, 0), 0) = if(0 ≤ 𝐵, 𝐵, 0))
47 iftrue 4237 . . . . . . . . . . 11 (𝑥𝐴 → if(𝑥𝐴, if(0 ≤ 𝐶, 𝐶, 0), 0) = if(0 ≤ 𝐶, 𝐶, 0))
4847adantl 473 . . . . . . . . . 10 ((𝜑𝑥𝐴) → if(𝑥𝐴, if(0 ≤ 𝐶, 𝐶, 0), 0) = if(0 ≤ 𝐶, 𝐶, 0))
4944, 46, 483brtr4d 4837 . . . . . . . . 9 ((𝜑𝑥𝐴) → if(𝑥𝐴, if(0 ≤ 𝐵, 𝐵, 0), 0) ≤ if(𝑥𝐴, if(0 ≤ 𝐶, 𝐶, 0), 0))
5049ex 449 . . . . . . . 8 (𝜑 → (𝑥𝐴 → if(𝑥𝐴, if(0 ≤ 𝐵, 𝐵, 0), 0) ≤ if(𝑥𝐴, if(0 ≤ 𝐶, 𝐶, 0), 0)))
51 0le0 11323 . . . . . . . . . 10 0 ≤ 0
5251a1i 11 . . . . . . . . 9 𝑥𝐴 → 0 ≤ 0)
53 iffalse 4240 . . . . . . . . 9 𝑥𝐴 → if(𝑥𝐴, if(0 ≤ 𝐵, 𝐵, 0), 0) = 0)
54 iffalse 4240 . . . . . . . . 9 𝑥𝐴 → if(𝑥𝐴, if(0 ≤ 𝐶, 𝐶, 0), 0) = 0)
5552, 53, 543brtr4d 4837 . . . . . . . 8 𝑥𝐴 → if(𝑥𝐴, if(0 ≤ 𝐵, 𝐵, 0), 0) ≤ if(𝑥𝐴, if(0 ≤ 𝐶, 𝐶, 0), 0))
5650, 55pm2.61d1 171 . . . . . . 7 (𝜑 → if(𝑥𝐴, if(0 ≤ 𝐵, 𝐵, 0), 0) ≤ if(𝑥𝐴, if(0 ≤ 𝐶, 𝐶, 0), 0))
57 ifan 4279 . . . . . . 7 if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0) = if(𝑥𝐴, if(0 ≤ 𝐵, 𝐵, 0), 0)
58 ifan 4279 . . . . . . 7 if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0) = if(𝑥𝐴, if(0 ≤ 𝐶, 𝐶, 0), 0)
5956, 57, 583brtr4g 4839 . . . . . 6 (𝜑 → if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0) ≤ if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0))
6059ralrimivw 3106 . . . . 5 (𝜑 → ∀𝑥 ∈ ℝ if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0) ≤ if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0))
61 reex 10240 . . . . . . 7 ℝ ∈ V
6261a1i 11 . . . . . 6 (𝜑 → ℝ ∈ V)
63 eqidd 2762 . . . . . 6 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0)))
64 eqidd 2762 . . . . . 6 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0)))
6562, 20, 29, 63, 64ofrfval2 7082 . . . . 5 (𝜑 → ((𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0)) ∘𝑟 ≤ (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0)) ↔ ∀𝑥 ∈ ℝ if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0) ≤ if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0)))
6660, 65mpbird 247 . . . 4 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0)) ∘𝑟 ≤ (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0)))
67 itg2le 23726 . . . 4 (((𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0)):ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0)):ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0)) ∘𝑟 ≤ (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0))) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0))) ≤ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0))))
6822, 31, 66, 67syl3anc 1477 . . 3 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0))) ≤ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0))))
697renegcld 10670 . . . . . . . . 9 ((𝜑𝑥𝐴) → -𝐶 ∈ ℝ)
7069ad2ant2r 800 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥𝐴 ∧ 0 ≤ -𝐶)) → -𝐶 ∈ ℝ)
7170rexrd 10302 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥𝐴 ∧ 0 ≤ -𝐶)) → -𝐶 ∈ ℝ*)
72 simprr 813 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥𝐴 ∧ 0 ≤ -𝐶)) → 0 ≤ -𝐶)
73 elxrge0 12495 . . . . . . 7 (-𝐶 ∈ (0[,]+∞) ↔ (-𝐶 ∈ ℝ* ∧ 0 ≤ -𝐶))
7471, 72, 73sylanbrc 701 . . . . . 6 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥𝐴 ∧ 0 ≤ -𝐶)) → -𝐶 ∈ (0[,]+∞))
7518a1i 11 . . . . . 6 (((𝜑𝑥 ∈ ℝ) ∧ ¬ (𝑥𝐴 ∧ 0 ≤ -𝐶)) → 0 ∈ (0[,]+∞))
7674, 75ifclda 4265 . . . . 5 ((𝜑𝑥 ∈ ℝ) → if((𝑥𝐴 ∧ 0 ≤ -𝐶), -𝐶, 0) ∈ (0[,]+∞))
77 eqid 2761 . . . . 5 (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝐶), -𝐶, 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝐶), -𝐶, 0))
7876, 77fmptd 6550 . . . 4 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝐶), -𝐶, 0)):ℝ⟶(0[,]+∞))
792renegcld 10670 . . . . . . . . 9 ((𝜑𝑥𝐴) → -𝐵 ∈ ℝ)
8079ad2ant2r 800 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥𝐴 ∧ 0 ≤ -𝐵)) → -𝐵 ∈ ℝ)
8180rexrd 10302 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥𝐴 ∧ 0 ≤ -𝐵)) → -𝐵 ∈ ℝ*)
82 simprr 813 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥𝐴 ∧ 0 ≤ -𝐵)) → 0 ≤ -𝐵)
83 elxrge0 12495 . . . . . . 7 (-𝐵 ∈ (0[,]+∞) ↔ (-𝐵 ∈ ℝ* ∧ 0 ≤ -𝐵))
8481, 82, 83sylanbrc 701 . . . . . 6 (((𝜑𝑥 ∈ ℝ) ∧ (𝑥𝐴 ∧ 0 ≤ -𝐵)) → -𝐵 ∈ (0[,]+∞))
8518a1i 11 . . . . . 6 (((𝜑𝑥 ∈ ℝ) ∧ ¬ (𝑥𝐴 ∧ 0 ≤ -𝐵)) → 0 ∈ (0[,]+∞))
8684, 85ifclda 4265 . . . . 5 ((𝜑𝑥 ∈ ℝ) → if((𝑥𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0) ∈ (0[,]+∞))
87 eqid 2761 . . . . 5 (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0))
8886, 87fmptd 6550 . . . 4 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0)):ℝ⟶(0[,]+∞))
89 max1 12230 . . . . . . . . . . . 12 ((0 ∈ ℝ ∧ -𝐵 ∈ ℝ) → 0 ≤ if(0 ≤ -𝐵, -𝐵, 0))
9032, 79, 89sylancr 698 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → 0 ≤ if(0 ≤ -𝐵, -𝐵, 0))
91 ifcl 4275 . . . . . . . . . . . . 13 ((-𝐵 ∈ ℝ ∧ 0 ∈ ℝ) → if(0 ≤ -𝐵, -𝐵, 0) ∈ ℝ)
9279, 32, 91sylancl 697 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → if(0 ≤ -𝐵, -𝐵, 0) ∈ ℝ)
932, 7lenegd 10819 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → (𝐵𝐶 ↔ -𝐶 ≤ -𝐵))
9437, 93mpbid 222 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → -𝐶 ≤ -𝐵)
95 max2 12232 . . . . . . . . . . . . 13 ((0 ∈ ℝ ∧ -𝐵 ∈ ℝ) → -𝐵 ≤ if(0 ≤ -𝐵, -𝐵, 0))
9632, 79, 95sylancr 698 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → -𝐵 ≤ if(0 ≤ -𝐵, -𝐵, 0))
9769, 79, 92, 94, 96letrd 10407 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → -𝐶 ≤ if(0 ≤ -𝐵, -𝐵, 0))
98 maxle 12236 . . . . . . . . . . . 12 ((0 ∈ ℝ ∧ -𝐶 ∈ ℝ ∧ if(0 ≤ -𝐵, -𝐵, 0) ∈ ℝ) → (if(0 ≤ -𝐶, -𝐶, 0) ≤ if(0 ≤ -𝐵, -𝐵, 0) ↔ (0 ≤ if(0 ≤ -𝐵, -𝐵, 0) ∧ -𝐶 ≤ if(0 ≤ -𝐵, -𝐵, 0))))
9941, 69, 92, 98syl3anc 1477 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → (if(0 ≤ -𝐶, -𝐶, 0) ≤ if(0 ≤ -𝐵, -𝐵, 0) ↔ (0 ≤ if(0 ≤ -𝐵, -𝐵, 0) ∧ -𝐶 ≤ if(0 ≤ -𝐵, -𝐵, 0))))
10090, 97, 99mpbir2and 995 . . . . . . . . . 10 ((𝜑𝑥𝐴) → if(0 ≤ -𝐶, -𝐶, 0) ≤ if(0 ≤ -𝐵, -𝐵, 0))
101 iftrue 4237 . . . . . . . . . . 11 (𝑥𝐴 → if(𝑥𝐴, if(0 ≤ -𝐶, -𝐶, 0), 0) = if(0 ≤ -𝐶, -𝐶, 0))
102101adantl 473 . . . . . . . . . 10 ((𝜑𝑥𝐴) → if(𝑥𝐴, if(0 ≤ -𝐶, -𝐶, 0), 0) = if(0 ≤ -𝐶, -𝐶, 0))
103 iftrue 4237 . . . . . . . . . . 11 (𝑥𝐴 → if(𝑥𝐴, if(0 ≤ -𝐵, -𝐵, 0), 0) = if(0 ≤ -𝐵, -𝐵, 0))
104103adantl 473 . . . . . . . . . 10 ((𝜑𝑥𝐴) → if(𝑥𝐴, if(0 ≤ -𝐵, -𝐵, 0), 0) = if(0 ≤ -𝐵, -𝐵, 0))
105100, 102, 1043brtr4d 4837 . . . . . . . . 9 ((𝜑𝑥𝐴) → if(𝑥𝐴, if(0 ≤ -𝐶, -𝐶, 0), 0) ≤ if(𝑥𝐴, if(0 ≤ -𝐵, -𝐵, 0), 0))
106105ex 449 . . . . . . . 8 (𝜑 → (𝑥𝐴 → if(𝑥𝐴, if(0 ≤ -𝐶, -𝐶, 0), 0) ≤ if(𝑥𝐴, if(0 ≤ -𝐵, -𝐵, 0), 0)))
107 iffalse 4240 . . . . . . . . 9 𝑥𝐴 → if(𝑥𝐴, if(0 ≤ -𝐶, -𝐶, 0), 0) = 0)
108 iffalse 4240 . . . . . . . . 9 𝑥𝐴 → if(𝑥𝐴, if(0 ≤ -𝐵, -𝐵, 0), 0) = 0)
10952, 107, 1083brtr4d 4837 . . . . . . . 8 𝑥𝐴 → if(𝑥𝐴, if(0 ≤ -𝐶, -𝐶, 0), 0) ≤ if(𝑥𝐴, if(0 ≤ -𝐵, -𝐵, 0), 0))
110106, 109pm2.61d1 171 . . . . . . 7 (𝜑 → if(𝑥𝐴, if(0 ≤ -𝐶, -𝐶, 0), 0) ≤ if(𝑥𝐴, if(0 ≤ -𝐵, -𝐵, 0), 0))
111 ifan 4279 . . . . . . 7 if((𝑥𝐴 ∧ 0 ≤ -𝐶), -𝐶, 0) = if(𝑥𝐴, if(0 ≤ -𝐶, -𝐶, 0), 0)
112 ifan 4279 . . . . . . 7 if((𝑥𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0) = if(𝑥𝐴, if(0 ≤ -𝐵, -𝐵, 0), 0)
113110, 111, 1123brtr4g 4839 . . . . . 6 (𝜑 → if((𝑥𝐴 ∧ 0 ≤ -𝐶), -𝐶, 0) ≤ if((𝑥𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0))
114113ralrimivw 3106 . . . . 5 (𝜑 → ∀𝑥 ∈ ℝ if((𝑥𝐴 ∧ 0 ≤ -𝐶), -𝐶, 0) ≤ if((𝑥𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0))
115 eqidd 2762 . . . . . 6 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝐶), -𝐶, 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝐶), -𝐶, 0)))
116 eqidd 2762 . . . . . 6 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0)))
11762, 76, 86, 115, 116ofrfval2 7082 . . . . 5 (𝜑 → ((𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝐶), -𝐶, 0)) ∘𝑟 ≤ (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0)) ↔ ∀𝑥 ∈ ℝ if((𝑥𝐴 ∧ 0 ≤ -𝐶), -𝐶, 0) ≤ if((𝑥𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0)))
118114, 117mpbird 247 . . . 4 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝐶), -𝐶, 0)) ∘𝑟 ≤ (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0)))
119 itg2le 23726 . . . 4 (((𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝐶), -𝐶, 0)):ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0)):ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝐶), -𝐶, 0)) ∘𝑟 ≤ (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0))) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝐶), -𝐶, 0))) ≤ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0))))
12078, 88, 118, 119syl3anc 1477 . . 3 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝐶), -𝐶, 0))) ≤ (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0))))
1215, 10, 11, 12, 68, 120le2subd 10860 . 2 (𝜑 → ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0))) − (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0)))) ≤ ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0))) − (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝐶), -𝐶, 0)))))
1222, 1itgrevallem1 23781 . 2 (𝜑 → ∫𝐴𝐵 d𝑥 = ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0))) − (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0)))))
1237, 6itgrevallem1 23781 . 2 (𝜑 → ∫𝐴𝐶 d𝑥 = ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐶), 𝐶, 0))) − (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝐶), -𝐶, 0)))))
124121, 122, 1233brtr4d 4837 1 (𝜑 → ∫𝐴𝐵 d𝑥 ≤ ∫𝐴𝐶 d𝑥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383  w3a 1072   = wceq 1632  wcel 2140  wral 3051  Vcvv 3341  ifcif 4231   class class class wbr 4805  cmpt 4882  wf 6046  cfv 6050  (class class class)co 6815  𝑟 cofr 7063  cr 10148  0cc0 10149  +∞cpnf 10284  *cxr 10286  cle 10288  cmin 10479  -cneg 10480  [,]cicc 12392  MblFncmbf 23603  2citg2 23605  𝐿1cibl 23606  citg 23607
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1989  ax-6 2055  ax-7 2091  ax-8 2142  ax-9 2149  ax-10 2169  ax-11 2184  ax-12 2197  ax-13 2392  ax-ext 2741  ax-rep 4924  ax-sep 4934  ax-nul 4942  ax-pow 4993  ax-pr 5056  ax-un 7116  ax-inf2 8714  ax-cnex 10205  ax-resscn 10206  ax-1cn 10207  ax-icn 10208  ax-addcl 10209  ax-addrcl 10210  ax-mulcl 10211  ax-mulrcl 10212  ax-mulcom 10213  ax-addass 10214  ax-mulass 10215  ax-distr 10216  ax-i2m1 10217  ax-1ne0 10218  ax-1rid 10219  ax-rnegex 10220  ax-rrecex 10221  ax-cnre 10222  ax-pre-lttri 10223  ax-pre-lttrn 10224  ax-pre-ltadd 10225  ax-pre-mulgt0 10226  ax-pre-sup 10227  ax-addf 10228
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-fal 1638  df-ex 1854  df-nf 1859  df-sb 2048  df-eu 2612  df-mo 2613  df-clab 2748  df-cleq 2754  df-clel 2757  df-nfc 2892  df-ne 2934  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3343  df-sbc 3578  df-csb 3676  df-dif 3719  df-un 3721  df-in 3723  df-ss 3730  df-pss 3732  df-nul 4060  df-if 4232  df-pw 4305  df-sn 4323  df-pr 4325  df-tp 4327  df-op 4329  df-uni 4590  df-int 4629  df-iun 4675  df-disj 4774  df-br 4806  df-opab 4866  df-mpt 4883  df-tr 4906  df-id 5175  df-eprel 5180  df-po 5188  df-so 5189  df-fr 5226  df-se 5227  df-we 5228  df-xp 5273  df-rel 5274  df-cnv 5275  df-co 5276  df-dm 5277  df-rn 5278  df-res 5279  df-ima 5280  df-pred 5842  df-ord 5888  df-on 5889  df-lim 5890  df-suc 5891  df-iota 6013  df-fun 6052  df-fn 6053  df-f 6054  df-f1 6055  df-fo 6056  df-f1o 6057  df-fv 6058  df-isom 6059  df-riota 6776  df-ov 6818  df-oprab 6819  df-mpt2 6820  df-of 7064  df-ofr 7065  df-om 7233  df-1st 7335  df-2nd 7336  df-wrecs 7578  df-recs 7639  df-rdg 7677  df-1o 7731  df-2o 7732  df-oadd 7735  df-er 7914  df-map 8028  df-pm 8029  df-en 8125  df-dom 8126  df-sdom 8127  df-fin 8128  df-sup 8516  df-inf 8517  df-oi 8583  df-card 8976  df-cda 9203  df-pnf 10289  df-mnf 10290  df-xr 10291  df-ltxr 10292  df-le 10293  df-sub 10481  df-neg 10482  df-div 10898  df-nn 11234  df-2 11292  df-3 11293  df-4 11294  df-n0 11506  df-z 11591  df-uz 11901  df-q 12003  df-rp 12047  df-xadd 12161  df-ioo 12393  df-ico 12395  df-icc 12396  df-fz 12541  df-fzo 12681  df-fl 12808  df-mod 12884  df-seq 13017  df-exp 13076  df-hash 13333  df-cj 14059  df-re 14060  df-im 14061  df-sqrt 14195  df-abs 14196  df-clim 14439  df-sum 14637  df-xmet 19962  df-met 19963  df-ovol 23454  df-vol 23455  df-mbf 23608  df-itg1 23609  df-itg2 23610  df-ibl 23611  df-itg 23612  df-0p 23657
This theorem is referenced by:  itgge0  23797  itgless  23803  itgabs  23821  itgulm  24382  itgabsnc  33811  wallispilem1  40804  fourierdlem47  40892  fourierdlem87  40932  etransclem23  40996
  Copyright terms: Public domain W3C validator