![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > itgitg2 | Structured version Visualization version GIF version |
Description: Transfer an integral using ∫2 to an equivalent integral using ∫. (Contributed by Mario Carneiro, 6-Aug-2014.) |
Ref | Expression |
---|---|
itgitg2.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → 𝐴 ∈ ℝ) |
itgitg2.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → 0 ≤ 𝐴) |
itgitg2.3 | ⊢ (𝜑 → (𝑥 ∈ ℝ ↦ 𝐴) ∈ 𝐿1) |
Ref | Expression |
---|---|
itgitg2 | ⊢ (𝜑 → ∫ℝ𝐴 d𝑥 = (∫2‘(𝑥 ∈ ℝ ↦ 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | itgitg2.1 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → 𝐴 ∈ ℝ) | |
2 | itgitg2.3 | . . 3 ⊢ (𝜑 → (𝑥 ∈ ℝ ↦ 𝐴) ∈ 𝐿1) | |
3 | itgitg2.2 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → 0 ≤ 𝐴) | |
4 | 1, 2, 3 | itgposval 23607 | . 2 ⊢ (𝜑 → ∫ℝ𝐴 d𝑥 = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ ℝ, 𝐴, 0)))) |
5 | iftrue 4125 | . . . 4 ⊢ (𝑥 ∈ ℝ → if(𝑥 ∈ ℝ, 𝐴, 0) = 𝐴) | |
6 | 5 | mpteq2ia 4773 | . . 3 ⊢ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ ℝ, 𝐴, 0)) = (𝑥 ∈ ℝ ↦ 𝐴) |
7 | 6 | fveq2i 6232 | . 2 ⊢ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ ℝ, 𝐴, 0))) = (∫2‘(𝑥 ∈ ℝ ↦ 𝐴)) |
8 | 4, 7 | syl6eq 2701 | 1 ⊢ (𝜑 → ∫ℝ𝐴 d𝑥 = (∫2‘(𝑥 ∈ ℝ ↦ 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1523 ∈ wcel 2030 ifcif 4119 class class class wbr 4685 ↦ cmpt 4762 ‘cfv 5926 ℝcr 9973 0cc0 9974 ≤ cle 10113 ∫2citg2 23430 𝐿1cibl 23431 ∫citg 23432 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-inf2 8576 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 ax-pre-sup 10052 ax-addf 10053 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-fal 1529 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rmo 2949 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-int 4508 df-iun 4554 df-disj 4653 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-se 5103 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-isom 5935 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-of 6939 df-ofr 6940 df-om 7108 df-1st 7210 df-2nd 7211 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-1o 7605 df-2o 7606 df-oadd 7609 df-er 7787 df-map 7901 df-pm 7902 df-en 7998 df-dom 7999 df-sdom 8000 df-fin 8001 df-sup 8389 df-inf 8390 df-oi 8456 df-card 8803 df-cda 9028 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-div 10723 df-nn 11059 df-2 11117 df-3 11118 df-4 11119 df-n0 11331 df-z 11416 df-uz 11726 df-q 11827 df-rp 11871 df-xadd 11985 df-ioo 12217 df-ico 12219 df-icc 12220 df-fz 12365 df-fzo 12505 df-fl 12633 df-mod 12709 df-seq 12842 df-exp 12901 df-hash 13158 df-cj 13883 df-re 13884 df-im 13885 df-sqrt 14019 df-abs 14020 df-clim 14263 df-sum 14461 df-xmet 19787 df-met 19788 df-ovol 23279 df-vol 23280 df-mbf 23433 df-itg1 23434 df-itg2 23435 df-ibl 23436 df-itg 23437 df-0p 23482 |
This theorem is referenced by: itgitg1 23620 |
Copyright terms: Public domain | W3C validator |