Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itggt0cn Structured version   Visualization version   GIF version

Theorem itggt0cn 33814
Description: itggt0 23828 holds for continuous functions in the absence of ax-cc 9459. (Contributed by Brendan Leahy, 16-Nov-2017.)
Hypotheses
Ref Expression
itggt0cn.1 (𝜑𝑋 < 𝑌)
itggt0cn.2 (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐵) ∈ 𝐿1)
itggt0cn.3 ((𝜑𝑥 ∈ (𝑋(,)𝑌)) → 𝐵 ∈ ℝ+)
itggt0cn.cn (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐵) ∈ ((𝑋(,)𝑌)–cn→ℂ))
Assertion
Ref Expression
itggt0cn (𝜑 → 0 < ∫(𝑋(,)𝑌)𝐵 d𝑥)
Distinct variable groups:   𝑥,𝑋   𝑥,𝑌   𝜑,𝑥
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem itggt0cn
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 itggt0cn.1 . . 3 (𝜑𝑋 < 𝑌)
2 itggt0cn.3 . . . . . . . 8 ((𝜑𝑥 ∈ (𝑋(,)𝑌)) → 𝐵 ∈ ℝ+)
32rpred 12075 . . . . . . 7 ((𝜑𝑥 ∈ (𝑋(,)𝑌)) → 𝐵 ∈ ℝ)
42rpge0d 12079 . . . . . . 7 ((𝜑𝑥 ∈ (𝑋(,)𝑌)) → 0 ≤ 𝐵)
5 elrege0 12485 . . . . . . 7 (𝐵 ∈ (0[,)+∞) ↔ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵))
63, 4, 5sylanbrc 572 . . . . . 6 ((𝜑𝑥 ∈ (𝑋(,)𝑌)) → 𝐵 ∈ (0[,)+∞))
7 0e0icopnf 12489 . . . . . . 7 0 ∈ (0[,)+∞)
87a1i 11 . . . . . 6 ((𝜑 ∧ ¬ 𝑥 ∈ (𝑋(,)𝑌)) → 0 ∈ (0[,)+∞))
96, 8ifclda 4259 . . . . 5 (𝜑 → if(𝑥 ∈ (𝑋(,)𝑌), 𝐵, 0) ∈ (0[,)+∞))
109adantr 466 . . . 4 ((𝜑𝑥 ∈ ℝ) → if(𝑥 ∈ (𝑋(,)𝑌), 𝐵, 0) ∈ (0[,)+∞))
11 eqid 2771 . . . 4 (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑋(,)𝑌), 𝐵, 0)) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑋(,)𝑌), 𝐵, 0))
1210, 11fmptd 6527 . . 3 (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑋(,)𝑌), 𝐵, 0)):ℝ⟶(0[,)+∞))
132rpgt0d 12078 . . . . . . 7 ((𝜑𝑥 ∈ (𝑋(,)𝑌)) → 0 < 𝐵)
14 elioore 12410 . . . . . . . . . 10 (𝑥 ∈ (𝑋(,)𝑌) → 𝑥 ∈ ℝ)
1514adantl 467 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝑋(,)𝑌)) → 𝑥 ∈ ℝ)
16 iftrue 4231 . . . . . . . . . . 11 (𝑥 ∈ (𝑋(,)𝑌) → if(𝑥 ∈ (𝑋(,)𝑌), 𝐵, 0) = 𝐵)
1716adantl 467 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝑋(,)𝑌)) → if(𝑥 ∈ (𝑋(,)𝑌), 𝐵, 0) = 𝐵)
1817, 2eqeltrd 2850 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝑋(,)𝑌)) → if(𝑥 ∈ (𝑋(,)𝑌), 𝐵, 0) ∈ ℝ+)
1911fvmpt2 6433 . . . . . . . . 9 ((𝑥 ∈ ℝ ∧ if(𝑥 ∈ (𝑋(,)𝑌), 𝐵, 0) ∈ ℝ+) → ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑋(,)𝑌), 𝐵, 0))‘𝑥) = if(𝑥 ∈ (𝑋(,)𝑌), 𝐵, 0))
2015, 18, 19syl2anc 573 . . . . . . . 8 ((𝜑𝑥 ∈ (𝑋(,)𝑌)) → ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑋(,)𝑌), 𝐵, 0))‘𝑥) = if(𝑥 ∈ (𝑋(,)𝑌), 𝐵, 0))
2120, 17eqtrd 2805 . . . . . . 7 ((𝜑𝑥 ∈ (𝑋(,)𝑌)) → ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑋(,)𝑌), 𝐵, 0))‘𝑥) = 𝐵)
2213, 21breqtrrd 4814 . . . . . 6 ((𝜑𝑥 ∈ (𝑋(,)𝑌)) → 0 < ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑋(,)𝑌), 𝐵, 0))‘𝑥))
2322ralrimiva 3115 . . . . 5 (𝜑 → ∀𝑥 ∈ (𝑋(,)𝑌)0 < ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑋(,)𝑌), 𝐵, 0))‘𝑥))
24 nfcv 2913 . . . . . . 7 𝑥0
25 nfcv 2913 . . . . . . 7 𝑥 <
26 nffvmpt1 6340 . . . . . . 7 𝑥((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑋(,)𝑌), 𝐵, 0))‘𝑦)
2724, 25, 26nfbr 4833 . . . . . 6 𝑥0 < ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑋(,)𝑌), 𝐵, 0))‘𝑦)
28 nfv 1995 . . . . . 6 𝑦0 < ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑋(,)𝑌), 𝐵, 0))‘𝑥)
29 fveq2 6332 . . . . . . 7 (𝑦 = 𝑥 → ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑋(,)𝑌), 𝐵, 0))‘𝑦) = ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑋(,)𝑌), 𝐵, 0))‘𝑥))
3029breq2d 4798 . . . . . 6 (𝑦 = 𝑥 → (0 < ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑋(,)𝑌), 𝐵, 0))‘𝑦) ↔ 0 < ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑋(,)𝑌), 𝐵, 0))‘𝑥)))
3127, 28, 30cbvral 3316 . . . . 5 (∀𝑦 ∈ (𝑋(,)𝑌)0 < ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑋(,)𝑌), 𝐵, 0))‘𝑦) ↔ ∀𝑥 ∈ (𝑋(,)𝑌)0 < ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑋(,)𝑌), 𝐵, 0))‘𝑥))
3223, 31sylibr 224 . . . 4 (𝜑 → ∀𝑦 ∈ (𝑋(,)𝑌)0 < ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑋(,)𝑌), 𝐵, 0))‘𝑦))
3332r19.21bi 3081 . . 3 ((𝜑𝑦 ∈ (𝑋(,)𝑌)) → 0 < ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑋(,)𝑌), 𝐵, 0))‘𝑦))
34 ioossre 12440 . . . . . 6 (𝑋(,)𝑌) ⊆ ℝ
35 resmpt 5590 . . . . . 6 ((𝑋(,)𝑌) ⊆ ℝ → ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑋(,)𝑌), 𝐵, 0)) ↾ (𝑋(,)𝑌)) = (𝑥 ∈ (𝑋(,)𝑌) ↦ if(𝑥 ∈ (𝑋(,)𝑌), 𝐵, 0)))
3634, 35ax-mp 5 . . . . 5 ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑋(,)𝑌), 𝐵, 0)) ↾ (𝑋(,)𝑌)) = (𝑥 ∈ (𝑋(,)𝑌) ↦ if(𝑥 ∈ (𝑋(,)𝑌), 𝐵, 0))
3716mpteq2ia 4874 . . . . 5 (𝑥 ∈ (𝑋(,)𝑌) ↦ if(𝑥 ∈ (𝑋(,)𝑌), 𝐵, 0)) = (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐵)
3836, 37eqtri 2793 . . . 4 ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑋(,)𝑌), 𝐵, 0)) ↾ (𝑋(,)𝑌)) = (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐵)
39 itggt0cn.cn . . . 4 (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐵) ∈ ((𝑋(,)𝑌)–cn→ℂ))
4038, 39syl5eqel 2854 . . 3 (𝜑 → ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑋(,)𝑌), 𝐵, 0)) ↾ (𝑋(,)𝑌)) ∈ ((𝑋(,)𝑌)–cn→ℂ))
411, 12, 33, 40itg2gt0cn 33797 . 2 (𝜑 → 0 < (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑋(,)𝑌), 𝐵, 0))))
42 itggt0cn.2 . . 3 (𝜑 → (𝑥 ∈ (𝑋(,)𝑌) ↦ 𝐵) ∈ 𝐿1)
433, 42, 4itgposval 23782 . 2 (𝜑 → ∫(𝑋(,)𝑌)𝐵 d𝑥 = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑋(,)𝑌), 𝐵, 0))))
4441, 43breqtrrd 4814 1 (𝜑 → 0 < ∫(𝑋(,)𝑌)𝐵 d𝑥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 382   = wceq 1631  wcel 2145  wral 3061  wss 3723  ifcif 4225   class class class wbr 4786  cmpt 4863  cres 5251  cfv 6031  (class class class)co 6793  cc 10136  cr 10137  0cc0 10138  +∞cpnf 10273   < clt 10276  cle 10277  +crp 12035  (,)cioo 12380  [,)cico 12382  cnccncf 22899  2citg2 23604  𝐿1cibl 23605  citg 23606
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-inf2 8702  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215  ax-pre-sup 10216  ax-addf 10217
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-fal 1637  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-disj 4755  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-se 5209  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-isom 6040  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-of 7044  df-ofr 7045  df-om 7213  df-1st 7315  df-2nd 7316  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-1o 7713  df-2o 7714  df-oadd 7717  df-er 7896  df-map 8011  df-pm 8012  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-fi 8473  df-sup 8504  df-inf 8505  df-oi 8571  df-card 8965  df-cda 9192  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-div 10887  df-nn 11223  df-2 11281  df-3 11282  df-4 11283  df-n0 11495  df-z 11580  df-uz 11889  df-q 11992  df-rp 12036  df-xneg 12151  df-xadd 12152  df-xmul 12153  df-ioo 12384  df-ico 12386  df-icc 12387  df-fz 12534  df-fzo 12674  df-fl 12801  df-mod 12877  df-seq 13009  df-exp 13068  df-hash 13322  df-cj 14047  df-re 14048  df-im 14049  df-sqrt 14183  df-abs 14184  df-clim 14427  df-rlim 14428  df-sum 14625  df-rest 16291  df-topgen 16312  df-psmet 19953  df-xmet 19954  df-met 19955  df-bl 19956  df-mopn 19957  df-top 20919  df-topon 20936  df-bases 20971  df-cmp 21411  df-cncf 22901  df-ovol 23452  df-vol 23453  df-mbf 23607  df-itg1 23608  df-itg2 23609  df-ibl 23610  df-itg 23611  df-0p 23657
This theorem is referenced by:  ftc1cnnclem  33815
  Copyright terms: Public domain W3C validator