MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itgcl Structured version   Visualization version   GIF version

Theorem itgcl 23769
Description: The integral of an integrable function is a complex number. This is Metamath 100 proof #86. (Contributed by Mario Carneiro, 29-Jun-2014.)
Hypotheses
Ref Expression
itgmpt.1 ((𝜑𝑥𝐴) → 𝐵𝑉)
itgcl.2 (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)
Assertion
Ref Expression
itgcl (𝜑 → ∫𝐴𝐵 d𝑥 ∈ ℂ)
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥   𝑥,𝑉
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem itgcl
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 eqid 2770 . . 3 (ℜ‘(𝐵 / (i↑𝑘))) = (ℜ‘(𝐵 / (i↑𝑘)))
21dfitg 23755 . 2 𝐴𝐵 d𝑥 = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))))
3 fzfid 12979 . . 3 (𝜑 → (0...3) ∈ Fin)
4 ax-icn 10196 . . . . 5 i ∈ ℂ
5 elfznn0 12639 . . . . . 6 (𝑘 ∈ (0...3) → 𝑘 ∈ ℕ0)
65adantl 467 . . . . 5 ((𝜑𝑘 ∈ (0...3)) → 𝑘 ∈ ℕ0)
7 expcl 13084 . . . . 5 ((i ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (i↑𝑘) ∈ ℂ)
84, 6, 7sylancr 567 . . . 4 ((𝜑𝑘 ∈ (0...3)) → (i↑𝑘) ∈ ℂ)
9 elfzelz 12548 . . . . . 6 (𝑘 ∈ (0...3) → 𝑘 ∈ ℤ)
10 eqidd 2771 . . . . . . 7 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)) = (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)))
11 eqidd 2771 . . . . . . 7 ((𝜑𝑥𝐴) → (ℜ‘(𝐵 / (i↑𝑘))) = (ℜ‘(𝐵 / (i↑𝑘))))
12 itgcl.2 . . . . . . 7 (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)
13 itgmpt.1 . . . . . . 7 ((𝜑𝑥𝐴) → 𝐵𝑉)
1410, 11, 12, 13iblitg 23754 . . . . . 6 ((𝜑𝑘 ∈ ℤ) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) ∈ ℝ)
159, 14sylan2 572 . . . . 5 ((𝜑𝑘 ∈ (0...3)) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) ∈ ℝ)
1615recnd 10269 . . . 4 ((𝜑𝑘 ∈ (0...3)) → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) ∈ ℂ)
178, 16mulcld 10261 . . 3 ((𝜑𝑘 ∈ (0...3)) → ((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)))) ∈ ℂ)
183, 17fsumcl 14671 . 2 (𝜑 → Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)))) ∈ ℂ)
192, 18syl5eqel 2853 1 (𝜑 → ∫𝐴𝐵 d𝑥 ∈ ℂ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382  wcel 2144  ifcif 4223   class class class wbr 4784  cmpt 4861  cfv 6031  (class class class)co 6792  cc 10135  cr 10136  0cc0 10137  ici 10139   · cmul 10142  cle 10276   / cdiv 10885  3c3 11272  0cn0 11493  cz 11578  ...cfz 12532  cexp 13066  cre 14044  Σcsu 14623  2citg2 23603  𝐿1cibl 23604  citg 23605
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-rep 4902  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095  ax-inf2 8701  ax-cnex 10193  ax-resscn 10194  ax-1cn 10195  ax-icn 10196  ax-addcl 10197  ax-addrcl 10198  ax-mulcl 10199  ax-mulrcl 10200  ax-mulcom 10201  ax-addass 10202  ax-mulass 10203  ax-distr 10204  ax-i2m1 10205  ax-1ne0 10206  ax-1rid 10207  ax-rnegex 10208  ax-rrecex 10209  ax-cnre 10210  ax-pre-lttri 10211  ax-pre-lttrn 10212  ax-pre-ltadd 10213  ax-pre-mulgt0 10214  ax-pre-sup 10215
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-tru 1633  df-fal 1636  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-nel 3046  df-ral 3065  df-rex 3066  df-reu 3067  df-rmo 3068  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-pss 3737  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-tp 4319  df-op 4321  df-uni 4573  df-int 4610  df-iun 4654  df-br 4785  df-opab 4845  df-mpt 4862  df-tr 4885  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-se 5209  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-isom 6040  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-om 7212  df-1st 7314  df-2nd 7315  df-wrecs 7558  df-recs 7620  df-rdg 7658  df-1o 7712  df-oadd 7716  df-er 7895  df-en 8109  df-dom 8110  df-sdom 8111  df-fin 8112  df-sup 8503  df-inf 8504  df-oi 8570  df-card 8964  df-pnf 10277  df-mnf 10278  df-xr 10279  df-ltxr 10280  df-le 10281  df-sub 10469  df-neg 10470  df-div 10886  df-nn 11222  df-2 11280  df-3 11281  df-4 11282  df-n0 11494  df-z 11579  df-uz 11888  df-rp 12035  df-fz 12533  df-fzo 12673  df-fl 12800  df-mod 12876  df-seq 13008  df-exp 13067  df-hash 13321  df-cj 14046  df-re 14047  df-im 14048  df-sqrt 14182  df-abs 14183  df-clim 14426  df-sum 14624  df-ibl 23609  df-itg 23610
This theorem is referenced by:  itgneg  23789  itgaddlem2  23809  itgadd  23810  itgsub  23811  itgfsum  23812  itgmulc2lem2  23818  itgmulc2  23819  itgabs  23820  itgsplitioo  23823  ditgcl  23841  ditgswap  23842  ftc1lem1  24017  ftc1lem2  24018  ftc1a  24019  ftc1lem4  24021  ftc2  24026  itgparts  24029  itgsubstlem  24030  itgulm  24381  itgaddnclem2  33794  itgaddnc  33795  itgsubnc  33797  itgmulc2nclem2  33802  itgmulc2nc  33803  itgabsnc  33804  ftc1cnnclem  33808  ftc1anc  33818  ftc2nc  33819  itgpowd  38319  itgsinexplem1  40681  itgsinexp  40682  itgspltprt  40706  fourierdlem30  40865  fourierdlem47  40881  fourierdlem73  40907  fourierdlem83  40917  fourierdlem87  40921  fourierdlem95  40929  fourierdlem103  40937  fourierdlem104  40938  fourierdlem107  40941  fourierdlem112  40946  sqwvfoura  40956  etransclem23  40985
  Copyright terms: Public domain W3C validator