Mathbox for Brendan Leahy < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itgaddnc Structured version   Visualization version   GIF version

 Description: Choice-free analogue of itgadd 23811. (Contributed by Brendan Leahy, 11-Nov-2017.)
Hypotheses
Ref Expression
ibladdnc.2 (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)
ibladdnc.4 (𝜑 → (𝑥𝐴𝐶) ∈ 𝐿1)
ibladdnc.m (𝜑 → (𝑥𝐴 ↦ (𝐵 + 𝐶)) ∈ MblFn)
Assertion
Ref Expression
itgaddnc (𝜑 → ∫𝐴(𝐵 + 𝐶) d𝑥 = (∫𝐴𝐵 d𝑥 + ∫𝐴𝐶 d𝑥))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑉   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)

Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ibladdnc.2 . . . . . . . . 9 (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)
2 iblmbf 23754 . . . . . . . . 9 ((𝑥𝐴𝐵) ∈ 𝐿1 → (𝑥𝐴𝐵) ∈ MblFn)
31, 2syl 17 . . . . . . . 8 (𝜑 → (𝑥𝐴𝐵) ∈ MblFn)
4 ibladdnc.1 . . . . . . . 8 ((𝜑𝑥𝐴) → 𝐵𝑉)
53, 4mbfmptcl 23624 . . . . . . 7 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
6 ibladdnc.4 . . . . . . . . 9 (𝜑 → (𝑥𝐴𝐶) ∈ 𝐿1)
7 iblmbf 23754 . . . . . . . . 9 ((𝑥𝐴𝐶) ∈ 𝐿1 → (𝑥𝐴𝐶) ∈ MblFn)
86, 7syl 17 . . . . . . . 8 (𝜑 → (𝑥𝐴𝐶) ∈ MblFn)
9 ibladdnc.3 . . . . . . . 8 ((𝜑𝑥𝐴) → 𝐶𝑉)
108, 9mbfmptcl 23624 . . . . . . 7 ((𝜑𝑥𝐴) → 𝐶 ∈ ℂ)
115, 10readdd 14162 . . . . . 6 ((𝜑𝑥𝐴) → (ℜ‘(𝐵 + 𝐶)) = ((ℜ‘𝐵) + (ℜ‘𝐶)))
1211itgeq2dv 23768 . . . . 5 (𝜑 → ∫𝐴(ℜ‘(𝐵 + 𝐶)) d𝑥 = ∫𝐴((ℜ‘𝐵) + (ℜ‘𝐶)) d𝑥)
135recld 14142 . . . . . 6 ((𝜑𝑥𝐴) → (ℜ‘𝐵) ∈ ℝ)
145iblcn 23785 . . . . . . . 8 (𝜑 → ((𝑥𝐴𝐵) ∈ 𝐿1 ↔ ((𝑥𝐴 ↦ (ℜ‘𝐵)) ∈ 𝐿1 ∧ (𝑥𝐴 ↦ (ℑ‘𝐵)) ∈ 𝐿1)))
151, 14mpbid 222 . . . . . . 7 (𝜑 → ((𝑥𝐴 ↦ (ℜ‘𝐵)) ∈ 𝐿1 ∧ (𝑥𝐴 ↦ (ℑ‘𝐵)) ∈ 𝐿1))
1615simpld 482 . . . . . 6 (𝜑 → (𝑥𝐴 ↦ (ℜ‘𝐵)) ∈ 𝐿1)
1710recld 14142 . . . . . 6 ((𝜑𝑥𝐴) → (ℜ‘𝐶) ∈ ℝ)
1810iblcn 23785 . . . . . . . 8 (𝜑 → ((𝑥𝐴𝐶) ∈ 𝐿1 ↔ ((𝑥𝐴 ↦ (ℜ‘𝐶)) ∈ 𝐿1 ∧ (𝑥𝐴 ↦ (ℑ‘𝐶)) ∈ 𝐿1)))
196, 18mpbid 222 . . . . . . 7 (𝜑 → ((𝑥𝐴 ↦ (ℜ‘𝐶)) ∈ 𝐿1 ∧ (𝑥𝐴 ↦ (ℑ‘𝐶)) ∈ 𝐿1))
2019simpld 482 . . . . . 6 (𝜑 → (𝑥𝐴 ↦ (ℜ‘𝐶)) ∈ 𝐿1)
215, 10addcld 10261 . . . . . . . . 9 ((𝜑𝑥𝐴) → (𝐵 + 𝐶) ∈ ℂ)
22 eqidd 2772 . . . . . . . . 9 (𝜑 → (𝑥𝐴 ↦ (𝐵 + 𝐶)) = (𝑥𝐴 ↦ (𝐵 + 𝐶)))
23 ref 14060 . . . . . . . . . . 11 ℜ:ℂ⟶ℝ
2423a1i 11 . . . . . . . . . 10 (𝜑 → ℜ:ℂ⟶ℝ)
2524feqmptd 6391 . . . . . . . . 9 (𝜑 → ℜ = (𝑦 ∈ ℂ ↦ (ℜ‘𝑦)))
26 fveq2 6332 . . . . . . . . 9 (𝑦 = (𝐵 + 𝐶) → (ℜ‘𝑦) = (ℜ‘(𝐵 + 𝐶)))
2721, 22, 25, 26fmptco 6539 . . . . . . . 8 (𝜑 → (ℜ ∘ (𝑥𝐴 ↦ (𝐵 + 𝐶))) = (𝑥𝐴 ↦ (ℜ‘(𝐵 + 𝐶))))
2811mpteq2dva 4878 . . . . . . . 8 (𝜑 → (𝑥𝐴 ↦ (ℜ‘(𝐵 + 𝐶))) = (𝑥𝐴 ↦ ((ℜ‘𝐵) + (ℜ‘𝐶))))
2927, 28eqtrd 2805 . . . . . . 7 (𝜑 → (ℜ ∘ (𝑥𝐴 ↦ (𝐵 + 𝐶))) = (𝑥𝐴 ↦ ((ℜ‘𝐵) + (ℜ‘𝐶))))
30 ibladdnc.m . . . . . . . . 9 (𝜑 → (𝑥𝐴 ↦ (𝐵 + 𝐶)) ∈ MblFn)
31 eqid 2771 . . . . . . . . . . 11 (𝑥𝐴 ↦ (𝐵 + 𝐶)) = (𝑥𝐴 ↦ (𝐵 + 𝐶))
3221, 31fmptd 6527 . . . . . . . . . 10 (𝜑 → (𝑥𝐴 ↦ (𝐵 + 𝐶)):𝐴⟶ℂ)
33 ismbfcn 23617 . . . . . . . . . 10 ((𝑥𝐴 ↦ (𝐵 + 𝐶)):𝐴⟶ℂ → ((𝑥𝐴 ↦ (𝐵 + 𝐶)) ∈ MblFn ↔ ((ℜ ∘ (𝑥𝐴 ↦ (𝐵 + 𝐶))) ∈ MblFn ∧ (ℑ ∘ (𝑥𝐴 ↦ (𝐵 + 𝐶))) ∈ MblFn)))
3432, 33syl 17 . . . . . . . . 9 (𝜑 → ((𝑥𝐴 ↦ (𝐵 + 𝐶)) ∈ MblFn ↔ ((ℜ ∘ (𝑥𝐴 ↦ (𝐵 + 𝐶))) ∈ MblFn ∧ (ℑ ∘ (𝑥𝐴 ↦ (𝐵 + 𝐶))) ∈ MblFn)))
3530, 34mpbid 222 . . . . . . . 8 (𝜑 → ((ℜ ∘ (𝑥𝐴 ↦ (𝐵 + 𝐶))) ∈ MblFn ∧ (ℑ ∘ (𝑥𝐴 ↦ (𝐵 + 𝐶))) ∈ MblFn))
3635simpld 482 . . . . . . 7 (𝜑 → (ℜ ∘ (𝑥𝐴 ↦ (𝐵 + 𝐶))) ∈ MblFn)
3729, 36eqeltrrd 2851 . . . . . 6 (𝜑 → (𝑥𝐴 ↦ ((ℜ‘𝐵) + (ℜ‘𝐶))) ∈ MblFn)
3813, 16, 17, 20, 37, 13, 17itgaddnclem2 33801 . . . . 5 (𝜑 → ∫𝐴((ℜ‘𝐵) + (ℜ‘𝐶)) d𝑥 = (∫𝐴(ℜ‘𝐵) d𝑥 + ∫𝐴(ℜ‘𝐶) d𝑥))
3912, 38eqtrd 2805 . . . 4 (𝜑 → ∫𝐴(ℜ‘(𝐵 + 𝐶)) d𝑥 = (∫𝐴(ℜ‘𝐵) d𝑥 + ∫𝐴(ℜ‘𝐶) d𝑥))
405, 10imaddd 14163 . . . . . . . 8 ((𝜑𝑥𝐴) → (ℑ‘(𝐵 + 𝐶)) = ((ℑ‘𝐵) + (ℑ‘𝐶)))
4140itgeq2dv 23768 . . . . . . 7 (𝜑 → ∫𝐴(ℑ‘(𝐵 + 𝐶)) d𝑥 = ∫𝐴((ℑ‘𝐵) + (ℑ‘𝐶)) d𝑥)
425imcld 14143 . . . . . . . 8 ((𝜑𝑥𝐴) → (ℑ‘𝐵) ∈ ℝ)
4315simprd 483 . . . . . . . 8 (𝜑 → (𝑥𝐴 ↦ (ℑ‘𝐵)) ∈ 𝐿1)
4410imcld 14143 . . . . . . . 8 ((𝜑𝑥𝐴) → (ℑ‘𝐶) ∈ ℝ)
4519simprd 483 . . . . . . . 8 (𝜑 → (𝑥𝐴 ↦ (ℑ‘𝐶)) ∈ 𝐿1)
46 imf 14061 . . . . . . . . . . . . 13 ℑ:ℂ⟶ℝ
4746a1i 11 . . . . . . . . . . . 12 (𝜑 → ℑ:ℂ⟶ℝ)
4847feqmptd 6391 . . . . . . . . . . 11 (𝜑 → ℑ = (𝑦 ∈ ℂ ↦ (ℑ‘𝑦)))
49 fveq2 6332 . . . . . . . . . . 11 (𝑦 = (𝐵 + 𝐶) → (ℑ‘𝑦) = (ℑ‘(𝐵 + 𝐶)))
5021, 22, 48, 49fmptco 6539 . . . . . . . . . 10 (𝜑 → (ℑ ∘ (𝑥𝐴 ↦ (𝐵 + 𝐶))) = (𝑥𝐴 ↦ (ℑ‘(𝐵 + 𝐶))))
5140mpteq2dva 4878 . . . . . . . . . 10 (𝜑 → (𝑥𝐴 ↦ (ℑ‘(𝐵 + 𝐶))) = (𝑥𝐴 ↦ ((ℑ‘𝐵) + (ℑ‘𝐶))))
5250, 51eqtrd 2805 . . . . . . . . 9 (𝜑 → (ℑ ∘ (𝑥𝐴 ↦ (𝐵 + 𝐶))) = (𝑥𝐴 ↦ ((ℑ‘𝐵) + (ℑ‘𝐶))))
5335simprd 483 . . . . . . . . 9 (𝜑 → (ℑ ∘ (𝑥𝐴 ↦ (𝐵 + 𝐶))) ∈ MblFn)
5452, 53eqeltrrd 2851 . . . . . . . 8 (𝜑 → (𝑥𝐴 ↦ ((ℑ‘𝐵) + (ℑ‘𝐶))) ∈ MblFn)
5542, 43, 44, 45, 54, 42, 44itgaddnclem2 33801 . . . . . . 7 (𝜑 → ∫𝐴((ℑ‘𝐵) + (ℑ‘𝐶)) d𝑥 = (∫𝐴(ℑ‘𝐵) d𝑥 + ∫𝐴(ℑ‘𝐶) d𝑥))
5641, 55eqtrd 2805 . . . . . 6 (𝜑 → ∫𝐴(ℑ‘(𝐵 + 𝐶)) d𝑥 = (∫𝐴(ℑ‘𝐵) d𝑥 + ∫𝐴(ℑ‘𝐶) d𝑥))
5756oveq2d 6809 . . . . 5 (𝜑 → (i · ∫𝐴(ℑ‘(𝐵 + 𝐶)) d𝑥) = (i · (∫𝐴(ℑ‘𝐵) d𝑥 + ∫𝐴(ℑ‘𝐶) d𝑥)))
58 ax-icn 10197 . . . . . . 7 i ∈ ℂ
5958a1i 11 . . . . . 6 (𝜑 → i ∈ ℂ)
6042, 43itgcl 23770 . . . . . 6 (𝜑 → ∫𝐴(ℑ‘𝐵) d𝑥 ∈ ℂ)
6144, 45itgcl 23770 . . . . . 6 (𝜑 → ∫𝐴(ℑ‘𝐶) d𝑥 ∈ ℂ)
6259, 60, 61adddid 10266 . . . . 5 (𝜑 → (i · (∫𝐴(ℑ‘𝐵) d𝑥 + ∫𝐴(ℑ‘𝐶) d𝑥)) = ((i · ∫𝐴(ℑ‘𝐵) d𝑥) + (i · ∫𝐴(ℑ‘𝐶) d𝑥)))
6357, 62eqtrd 2805 . . . 4 (𝜑 → (i · ∫𝐴(ℑ‘(𝐵 + 𝐶)) d𝑥) = ((i · ∫𝐴(ℑ‘𝐵) d𝑥) + (i · ∫𝐴(ℑ‘𝐶) d𝑥)))
6439, 63oveq12d 6811 . . 3 (𝜑 → (∫𝐴(ℜ‘(𝐵 + 𝐶)) d𝑥 + (i · ∫𝐴(ℑ‘(𝐵 + 𝐶)) d𝑥)) = ((∫𝐴(ℜ‘𝐵) d𝑥 + ∫𝐴(ℜ‘𝐶) d𝑥) + ((i · ∫𝐴(ℑ‘𝐵) d𝑥) + (i · ∫𝐴(ℑ‘𝐶) d𝑥))))
6513, 16itgcl 23770 . . . 4 (𝜑 → ∫𝐴(ℜ‘𝐵) d𝑥 ∈ ℂ)
6617, 20itgcl 23770 . . . 4 (𝜑 → ∫𝐴(ℜ‘𝐶) d𝑥 ∈ ℂ)
67 mulcl 10222 . . . . 5 ((i ∈ ℂ ∧ ∫𝐴(ℑ‘𝐵) d𝑥 ∈ ℂ) → (i · ∫𝐴(ℑ‘𝐵) d𝑥) ∈ ℂ)
6858, 60, 67sylancr 575 . . . 4 (𝜑 → (i · ∫𝐴(ℑ‘𝐵) d𝑥) ∈ ℂ)
69 mulcl 10222 . . . . 5 ((i ∈ ℂ ∧ ∫𝐴(ℑ‘𝐶) d𝑥 ∈ ℂ) → (i · ∫𝐴(ℑ‘𝐶) d𝑥) ∈ ℂ)
7058, 61, 69sylancr 575 . . . 4 (𝜑 → (i · ∫𝐴(ℑ‘𝐶) d𝑥) ∈ ℂ)
7165, 66, 68, 70add4d 10466 . . 3 (𝜑 → ((∫𝐴(ℜ‘𝐵) d𝑥 + ∫𝐴(ℜ‘𝐶) d𝑥) + ((i · ∫𝐴(ℑ‘𝐵) d𝑥) + (i · ∫𝐴(ℑ‘𝐶) d𝑥))) = ((∫𝐴(ℜ‘𝐵) d𝑥 + (i · ∫𝐴(ℑ‘𝐵) d𝑥)) + (∫𝐴(ℜ‘𝐶) d𝑥 + (i · ∫𝐴(ℑ‘𝐶) d𝑥))))
7264, 71eqtrd 2805 . 2 (𝜑 → (∫𝐴(ℜ‘(𝐵 + 𝐶)) d𝑥 + (i · ∫𝐴(ℑ‘(𝐵 + 𝐶)) d𝑥)) = ((∫𝐴(ℜ‘𝐵) d𝑥 + (i · ∫𝐴(ℑ‘𝐵) d𝑥)) + (∫𝐴(ℜ‘𝐶) d𝑥 + (i · ∫𝐴(ℑ‘𝐶) d𝑥))))
73 ovexd 6825 . . 3 ((𝜑𝑥𝐴) → (𝐵 + 𝐶) ∈ V)
744, 1, 9, 6, 30ibladdnc 33799 . . 3 (𝜑 → (𝑥𝐴 ↦ (𝐵 + 𝐶)) ∈ 𝐿1)
7573, 74itgcnval 23786 . 2 (𝜑 → ∫𝐴(𝐵 + 𝐶) d𝑥 = (∫𝐴(ℜ‘(𝐵 + 𝐶)) d𝑥 + (i · ∫𝐴(ℑ‘(𝐵 + 𝐶)) d𝑥)))
764, 1itgcnval 23786 . . 3 (𝜑 → ∫𝐴𝐵 d𝑥 = (∫𝐴(ℜ‘𝐵) d𝑥 + (i · ∫𝐴(ℑ‘𝐵) d𝑥)))
779, 6itgcnval 23786 . . 3 (𝜑 → ∫𝐴𝐶 d𝑥 = (∫𝐴(ℜ‘𝐶) d𝑥 + (i · ∫𝐴(ℑ‘𝐶) d𝑥)))
7876, 77oveq12d 6811 . 2 (𝜑 → (∫𝐴𝐵 d𝑥 + ∫𝐴𝐶 d𝑥) = ((∫𝐴(ℜ‘𝐵) d𝑥 + (i · ∫𝐴(ℑ‘𝐵) d𝑥)) + (∫𝐴(ℜ‘𝐶) d𝑥 + (i · ∫𝐴(ℑ‘𝐶) d𝑥))))
7972, 75, 783eqtr4d 2815 1 (𝜑 → ∫𝐴(𝐵 + 𝐶) d𝑥 = (∫𝐴𝐵 d𝑥 + ∫𝐴𝐶 d𝑥))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 382   = wceq 1631   ∈ wcel 2145  Vcvv 3351   ↦ cmpt 4863   ∘ ccom 5253  ⟶wf 6027  ‘cfv 6031  (class class class)co 6793  ℂcc 10136  ℝcr 10137  ici 10140   + caddc 10141   · cmul 10143  ℜcre 14045  ℑcim 14046  MblFncmbf 23602  𝐿1cibl 23605  ∫citg 23606 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-inf2 8702  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215  ax-pre-sup 10216  ax-addf 10217 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-fal 1637  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-disj 4755  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-se 5209  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-isom 6040  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-of 7044  df-ofr 7045  df-om 7213  df-1st 7315  df-2nd 7316  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-1o 7713  df-2o 7714  df-oadd 7717  df-er 7896  df-map 8011  df-pm 8012  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-fi 8473  df-sup 8504  df-inf 8505  df-oi 8571  df-card 8965  df-cda 9192  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-div 10887  df-nn 11223  df-2 11281  df-3 11282  df-4 11283  df-n0 11495  df-z 11580  df-uz 11889  df-q 11992  df-rp 12036  df-xneg 12151  df-xadd 12152  df-xmul 12153  df-ioo 12384  df-ico 12386  df-icc 12387  df-fz 12534  df-fzo 12674  df-fl 12801  df-mod 12877  df-seq 13009  df-exp 13068  df-hash 13322  df-cj 14047  df-re 14048  df-im 14049  df-sqrt 14183  df-abs 14184  df-clim 14427  df-sum 14625  df-rest 16291  df-topgen 16312  df-psmet 19953  df-xmet 19954  df-met 19955  df-bl 19956  df-mopn 19957  df-top 20919  df-topon 20936  df-bases 20971  df-cmp 21411  df-ovol 23452  df-vol 23453  df-mbf 23607  df-itg1 23608  df-itg2 23609  df-ibl 23610  df-itg 23611  df-0p 23657 This theorem is referenced by:  itgsubnc  33804  itgmulc2nc  33810  ftc1cnnclem  33815
 Copyright terms: Public domain W3C validator