Proof of Theorem itgabsnc
Step | Hyp | Ref
| Expression |
1 | | itgabsnc.1 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) |
2 | | itgabsnc.2 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈
𝐿1) |
3 | 1, 2 | itgcl 23769 |
. . . . . . . . . . 11
⊢ (𝜑 → ∫𝐴𝐵 d𝑥 ∈ ℂ) |
4 | 3 | cjcld 14143 |
. . . . . . . . . 10
⊢ (𝜑 → (∗‘∫𝐴𝐵 d𝑥) ∈ ℂ) |
5 | | iblmbf 23753 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝐿1 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn) |
6 | 2, 5 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn) |
7 | 6, 1 | mbfmptcl 23623 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℂ) |
8 | 7 | ralrimiva 3114 |
. . . . . . . . . . . 12
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝐵 ∈ ℂ) |
9 | | nfv 1994 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑦 𝐵 ∈ ℂ |
10 | | nfcsb1v 3696 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐵 |
11 | 10 | nfel1 2927 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐵 ∈ ℂ |
12 | | csbeq1a 3689 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑦 → 𝐵 = ⦋𝑦 / 𝑥⦌𝐵) |
13 | 12 | eleq1d 2834 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑦 → (𝐵 ∈ ℂ ↔ ⦋𝑦 / 𝑥⦌𝐵 ∈ ℂ)) |
14 | 9, 11, 13 | cbvral 3315 |
. . . . . . . . . . . 12
⊢
(∀𝑥 ∈
𝐴 𝐵 ∈ ℂ ↔ ∀𝑦 ∈ 𝐴 ⦋𝑦 / 𝑥⦌𝐵 ∈ ℂ) |
15 | 8, 14 | sylib 208 |
. . . . . . . . . . 11
⊢ (𝜑 → ∀𝑦 ∈ 𝐴 ⦋𝑦 / 𝑥⦌𝐵 ∈ ℂ) |
16 | 15 | r19.21bi 3080 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → ⦋𝑦 / 𝑥⦌𝐵 ∈ ℂ) |
17 | | nfcv 2912 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑦𝐵 |
18 | 17, 10, 12 | cbvmpt 4881 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑦 ∈ 𝐴 ↦ ⦋𝑦 / 𝑥⦌𝐵) |
19 | 18, 2 | syl5eqelr 2854 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑦 ∈ 𝐴 ↦ ⦋𝑦 / 𝑥⦌𝐵) ∈
𝐿1) |
20 | | itgabsnc.m2 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑦 ∈ 𝐴 ↦ ((∗‘∫𝐴𝐵 d𝑥) · ⦋𝑦 / 𝑥⦌𝐵)) ∈ MblFn) |
21 | 4, 16, 19, 20 | iblmulc2nc 33800 |
. . . . . . . . 9
⊢ (𝜑 → (𝑦 ∈ 𝐴 ↦ ((∗‘∫𝐴𝐵 d𝑥) · ⦋𝑦 / 𝑥⦌𝐵)) ∈
𝐿1) |
22 | 4 | adantr 466 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → (∗‘∫𝐴𝐵 d𝑥) ∈ ℂ) |
23 | 22, 16 | mulcld 10261 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → ((∗‘∫𝐴𝐵 d𝑥) · ⦋𝑦 / 𝑥⦌𝐵) ∈ ℂ) |
24 | 23 | iblcn 23784 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑦 ∈ 𝐴 ↦ ((∗‘∫𝐴𝐵 d𝑥) · ⦋𝑦 / 𝑥⦌𝐵)) ∈ 𝐿1 ↔
((𝑦 ∈ 𝐴 ↦
(ℜ‘((∗‘∫𝐴𝐵 d𝑥) · ⦋𝑦 / 𝑥⦌𝐵))) ∈ 𝐿1 ∧
(𝑦 ∈ 𝐴 ↦
(ℑ‘((∗‘∫𝐴𝐵 d𝑥) · ⦋𝑦 / 𝑥⦌𝐵))) ∈
𝐿1))) |
25 | 21, 24 | mpbid 222 |
. . . . . . . 8
⊢ (𝜑 → ((𝑦 ∈ 𝐴 ↦
(ℜ‘((∗‘∫𝐴𝐵 d𝑥) · ⦋𝑦 / 𝑥⦌𝐵))) ∈ 𝐿1 ∧
(𝑦 ∈ 𝐴 ↦
(ℑ‘((∗‘∫𝐴𝐵 d𝑥) · ⦋𝑦 / 𝑥⦌𝐵))) ∈
𝐿1)) |
26 | 25 | simpld 476 |
. . . . . . 7
⊢ (𝜑 → (𝑦 ∈ 𝐴 ↦
(ℜ‘((∗‘∫𝐴𝐵 d𝑥) · ⦋𝑦 / 𝑥⦌𝐵))) ∈
𝐿1) |
27 | 22, 16 | absmuld 14400 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) →
(abs‘((∗‘∫𝐴𝐵 d𝑥) · ⦋𝑦 / 𝑥⦌𝐵)) = ((abs‘(∗‘∫𝐴𝐵 d𝑥)) · (abs‘⦋𝑦 / 𝑥⦌𝐵))) |
28 | 27 | mpteq2dva 4876 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑦 ∈ 𝐴 ↦
(abs‘((∗‘∫𝐴𝐵 d𝑥) · ⦋𝑦 / 𝑥⦌𝐵))) = (𝑦 ∈ 𝐴 ↦
((abs‘(∗‘∫𝐴𝐵 d𝑥)) · (abs‘⦋𝑦 / 𝑥⦌𝐵)))) |
29 | 6, 1 | mbfdm2 23624 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐴 ∈ dom vol) |
30 | 22 | abscld 14382 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) →
(abs‘(∗‘∫𝐴𝐵 d𝑥)) ∈ ℝ) |
31 | 16 | abscld 14382 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → (abs‘⦋𝑦 / 𝑥⦌𝐵) ∈ ℝ) |
32 | | fconstmpt 5303 |
. . . . . . . . . . . 12
⊢ (𝐴 ×
{(abs‘(∗‘∫𝐴𝐵 d𝑥))}) = (𝑦 ∈ 𝐴 ↦
(abs‘(∗‘∫𝐴𝐵 d𝑥))) |
33 | 32 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐴 ×
{(abs‘(∗‘∫𝐴𝐵 d𝑥))}) = (𝑦 ∈ 𝐴 ↦
(abs‘(∗‘∫𝐴𝐵 d𝑥)))) |
34 | | nfcv 2912 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑦(abs‘𝐵) |
35 | | nfcv 2912 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑥abs |
36 | 35, 10 | nffv 6339 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑥(abs‘⦋𝑦 / 𝑥⦌𝐵) |
37 | 12 | fveq2d 6336 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑦 → (abs‘𝐵) = (abs‘⦋𝑦 / 𝑥⦌𝐵)) |
38 | 34, 36, 37 | cbvmpt 4881 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ 𝐴 ↦ (abs‘𝐵)) = (𝑦 ∈ 𝐴 ↦ (abs‘⦋𝑦 / 𝑥⦌𝐵)) |
39 | 38 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (abs‘𝐵)) = (𝑦 ∈ 𝐴 ↦ (abs‘⦋𝑦 / 𝑥⦌𝐵))) |
40 | 29, 30, 31, 33, 39 | offval2 7060 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝐴 ×
{(abs‘(∗‘∫𝐴𝐵 d𝑥))}) ∘𝑓 ·
(𝑥 ∈ 𝐴 ↦ (abs‘𝐵))) = (𝑦 ∈ 𝐴 ↦
((abs‘(∗‘∫𝐴𝐵 d𝑥)) · (abs‘⦋𝑦 / 𝑥⦌𝐵)))) |
41 | 28, 40 | eqtr4d 2807 |
. . . . . . . . 9
⊢ (𝜑 → (𝑦 ∈ 𝐴 ↦
(abs‘((∗‘∫𝐴𝐵 d𝑥) · ⦋𝑦 / 𝑥⦌𝐵))) = ((𝐴 ×
{(abs‘(∗‘∫𝐴𝐵 d𝑥))}) ∘𝑓 ·
(𝑥 ∈ 𝐴 ↦ (abs‘𝐵)))) |
42 | | itgabsnc.m1 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (abs‘𝐵)) ∈ MblFn) |
43 | 4 | abscld 14382 |
. . . . . . . . . 10
⊢ (𝜑 →
(abs‘(∗‘∫𝐴𝐵 d𝑥)) ∈ ℝ) |
44 | 7 | abscld 14382 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (abs‘𝐵) ∈ ℝ) |
45 | 44 | recnd 10269 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (abs‘𝐵) ∈ ℂ) |
46 | | eqid 2770 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ 𝐴 ↦ (abs‘𝐵)) = (𝑥 ∈ 𝐴 ↦ (abs‘𝐵)) |
47 | 45, 46 | fmptd 6527 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (abs‘𝐵)):𝐴⟶ℂ) |
48 | 42, 43, 47 | mbfmulc2re 23634 |
. . . . . . . . 9
⊢ (𝜑 → ((𝐴 ×
{(abs‘(∗‘∫𝐴𝐵 d𝑥))}) ∘𝑓 ·
(𝑥 ∈ 𝐴 ↦ (abs‘𝐵))) ∈ MblFn) |
49 | 41, 48 | eqeltrd 2849 |
. . . . . . . 8
⊢ (𝜑 → (𝑦 ∈ 𝐴 ↦
(abs‘((∗‘∫𝐴𝐵 d𝑥) · ⦋𝑦 / 𝑥⦌𝐵))) ∈ MblFn) |
50 | 23, 21, 49 | iblabsnc 33799 |
. . . . . . 7
⊢ (𝜑 → (𝑦 ∈ 𝐴 ↦
(abs‘((∗‘∫𝐴𝐵 d𝑥) · ⦋𝑦 / 𝑥⦌𝐵))) ∈
𝐿1) |
51 | 23 | recld 14141 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) →
(ℜ‘((∗‘∫𝐴𝐵 d𝑥) · ⦋𝑦 / 𝑥⦌𝐵)) ∈ ℝ) |
52 | 23 | abscld 14382 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) →
(abs‘((∗‘∫𝐴𝐵 d𝑥) · ⦋𝑦 / 𝑥⦌𝐵)) ∈ ℝ) |
53 | 23 | releabsd 14397 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) →
(ℜ‘((∗‘∫𝐴𝐵 d𝑥) · ⦋𝑦 / 𝑥⦌𝐵)) ≤
(abs‘((∗‘∫𝐴𝐵 d𝑥) · ⦋𝑦 / 𝑥⦌𝐵))) |
54 | 26, 50, 51, 52, 53 | itgle 23795 |
. . . . . 6
⊢ (𝜑 → ∫𝐴(ℜ‘((∗‘∫𝐴𝐵 d𝑥) · ⦋𝑦 / 𝑥⦌𝐵)) d𝑦 ≤ ∫𝐴(abs‘((∗‘∫𝐴𝐵 d𝑥) · ⦋𝑦 / 𝑥⦌𝐵)) d𝑦) |
55 | 3 | abscld 14382 |
. . . . . . . . 9
⊢ (𝜑 → (abs‘∫𝐴𝐵 d𝑥) ∈ ℝ) |
56 | 55 | recnd 10269 |
. . . . . . . 8
⊢ (𝜑 → (abs‘∫𝐴𝐵 d𝑥) ∈ ℂ) |
57 | 56 | sqvald 13211 |
. . . . . . 7
⊢ (𝜑 → ((abs‘∫𝐴𝐵 d𝑥)↑2) = ((abs‘∫𝐴𝐵 d𝑥) · (abs‘∫𝐴𝐵 d𝑥))) |
58 | 3 | absvalsqd 14388 |
. . . . . . . . . 10
⊢ (𝜑 → ((abs‘∫𝐴𝐵 d𝑥)↑2) = (∫𝐴𝐵 d𝑥 · (∗‘∫𝐴𝐵 d𝑥))) |
59 | 3, 4 | mulcomd 10262 |
. . . . . . . . . 10
⊢ (𝜑 → (∫𝐴𝐵 d𝑥 · (∗‘∫𝐴𝐵 d𝑥)) = ((∗‘∫𝐴𝐵 d𝑥) · ∫𝐴𝐵 d𝑥)) |
60 | 12, 17, 10 | cbvitg 23761 |
. . . . . . . . . . . 12
⊢
∫𝐴𝐵 d𝑥 = ∫𝐴⦋𝑦 / 𝑥⦌𝐵 d𝑦 |
61 | 60 | oveq2i 6803 |
. . . . . . . . . . 11
⊢
((∗‘∫𝐴𝐵 d𝑥) · ∫𝐴𝐵 d𝑥) = ((∗‘∫𝐴𝐵 d𝑥) · ∫𝐴⦋𝑦 / 𝑥⦌𝐵 d𝑦) |
62 | 4, 16, 19, 20 | itgmulc2nc 33803 |
. . . . . . . . . . 11
⊢ (𝜑 →
((∗‘∫𝐴𝐵 d𝑥) · ∫𝐴⦋𝑦 / 𝑥⦌𝐵 d𝑦) = ∫𝐴((∗‘∫𝐴𝐵 d𝑥) · ⦋𝑦 / 𝑥⦌𝐵) d𝑦) |
63 | 61, 62 | syl5eq 2816 |
. . . . . . . . . 10
⊢ (𝜑 →
((∗‘∫𝐴𝐵 d𝑥) · ∫𝐴𝐵 d𝑥) = ∫𝐴((∗‘∫𝐴𝐵 d𝑥) · ⦋𝑦 / 𝑥⦌𝐵) d𝑦) |
64 | 58, 59, 63 | 3eqtrd 2808 |
. . . . . . . . 9
⊢ (𝜑 → ((abs‘∫𝐴𝐵 d𝑥)↑2) = ∫𝐴((∗‘∫𝐴𝐵 d𝑥) · ⦋𝑦 / 𝑥⦌𝐵) d𝑦) |
65 | 64 | fveq2d 6336 |
. . . . . . . 8
⊢ (𝜑 →
(ℜ‘((abs‘∫𝐴𝐵 d𝑥)↑2)) = (ℜ‘∫𝐴((∗‘∫𝐴𝐵 d𝑥) · ⦋𝑦 / 𝑥⦌𝐵) d𝑦)) |
66 | 55 | resqcld 13241 |
. . . . . . . . 9
⊢ (𝜑 → ((abs‘∫𝐴𝐵 d𝑥)↑2) ∈ ℝ) |
67 | 66 | rered 14171 |
. . . . . . . 8
⊢ (𝜑 →
(ℜ‘((abs‘∫𝐴𝐵 d𝑥)↑2)) = ((abs‘∫𝐴𝐵 d𝑥)↑2)) |
68 | | ovexd 6824 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → ((∗‘∫𝐴𝐵 d𝑥) · ⦋𝑦 / 𝑥⦌𝐵) ∈ V) |
69 | 68, 21 | itgre 23786 |
. . . . . . . 8
⊢ (𝜑 → (ℜ‘∫𝐴((∗‘∫𝐴𝐵 d𝑥) · ⦋𝑦 / 𝑥⦌𝐵) d𝑦) = ∫𝐴(ℜ‘((∗‘∫𝐴𝐵 d𝑥) · ⦋𝑦 / 𝑥⦌𝐵)) d𝑦) |
70 | 65, 67, 69 | 3eqtr3d 2812 |
. . . . . . 7
⊢ (𝜑 → ((abs‘∫𝐴𝐵 d𝑥)↑2) = ∫𝐴(ℜ‘((∗‘∫𝐴𝐵 d𝑥) · ⦋𝑦 / 𝑥⦌𝐵)) d𝑦) |
71 | 57, 70 | eqtr3d 2806 |
. . . . . 6
⊢ (𝜑 → ((abs‘∫𝐴𝐵 d𝑥) · (abs‘∫𝐴𝐵 d𝑥)) = ∫𝐴(ℜ‘((∗‘∫𝐴𝐵 d𝑥) · ⦋𝑦 / 𝑥⦌𝐵)) d𝑦) |
72 | 37, 34, 36 | cbvitg 23761 |
. . . . . . . 8
⊢
∫𝐴(abs‘𝐵) d𝑥 = ∫𝐴(abs‘⦋𝑦 / 𝑥⦌𝐵) d𝑦 |
73 | 72 | oveq2i 6803 |
. . . . . . 7
⊢
((abs‘∫𝐴𝐵 d𝑥) · ∫𝐴(abs‘𝐵) d𝑥) = ((abs‘∫𝐴𝐵 d𝑥) · ∫𝐴(abs‘⦋𝑦 / 𝑥⦌𝐵) d𝑦) |
74 | 1, 2, 42 | iblabsnc 33799 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (abs‘𝐵)) ∈
𝐿1) |
75 | 38, 74 | syl5eqelr 2854 |
. . . . . . . . 9
⊢ (𝜑 → (𝑦 ∈ 𝐴 ↦ (abs‘⦋𝑦 / 𝑥⦌𝐵)) ∈
𝐿1) |
76 | 55 | adantr 466 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → (abs‘∫𝐴𝐵 d𝑥) ∈ ℝ) |
77 | | fconstmpt 5303 |
. . . . . . . . . . . 12
⊢ (𝐴 × {(abs‘∫𝐴𝐵 d𝑥)}) = (𝑦 ∈ 𝐴 ↦ (abs‘∫𝐴𝐵 d𝑥)) |
78 | 77 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐴 × {(abs‘∫𝐴𝐵 d𝑥)}) = (𝑦 ∈ 𝐴 ↦ (abs‘∫𝐴𝐵 d𝑥))) |
79 | 29, 76, 31, 78, 39 | offval2 7060 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝐴 × {(abs‘∫𝐴𝐵 d𝑥)}) ∘𝑓 ·
(𝑥 ∈ 𝐴 ↦ (abs‘𝐵))) = (𝑦 ∈ 𝐴 ↦ ((abs‘∫𝐴𝐵 d𝑥) · (abs‘⦋𝑦 / 𝑥⦌𝐵)))) |
80 | 42, 55, 47 | mbfmulc2re 23634 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝐴 × {(abs‘∫𝐴𝐵 d𝑥)}) ∘𝑓 ·
(𝑥 ∈ 𝐴 ↦ (abs‘𝐵))) ∈ MblFn) |
81 | 79, 80 | eqeltrrd 2850 |
. . . . . . . . 9
⊢ (𝜑 → (𝑦 ∈ 𝐴 ↦ ((abs‘∫𝐴𝐵 d𝑥) · (abs‘⦋𝑦 / 𝑥⦌𝐵))) ∈ MblFn) |
82 | 56, 31, 75, 81 | itgmulc2nc 33803 |
. . . . . . . 8
⊢ (𝜑 → ((abs‘∫𝐴𝐵 d𝑥) · ∫𝐴(abs‘⦋𝑦 / 𝑥⦌𝐵) d𝑦) = ∫𝐴((abs‘∫𝐴𝐵 d𝑥) · (abs‘⦋𝑦 / 𝑥⦌𝐵)) d𝑦) |
83 | 3 | adantr 466 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → ∫𝐴𝐵 d𝑥 ∈ ℂ) |
84 | 83 | abscjd 14396 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) →
(abs‘(∗‘∫𝐴𝐵 d𝑥)) = (abs‘∫𝐴𝐵 d𝑥)) |
85 | 84 | oveq1d 6807 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) →
((abs‘(∗‘∫𝐴𝐵 d𝑥)) · (abs‘⦋𝑦 / 𝑥⦌𝐵)) = ((abs‘∫𝐴𝐵 d𝑥) · (abs‘⦋𝑦 / 𝑥⦌𝐵))) |
86 | 27, 85 | eqtrd 2804 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) →
(abs‘((∗‘∫𝐴𝐵 d𝑥) · ⦋𝑦 / 𝑥⦌𝐵)) = ((abs‘∫𝐴𝐵 d𝑥) · (abs‘⦋𝑦 / 𝑥⦌𝐵))) |
87 | 86 | itgeq2dv 23767 |
. . . . . . . 8
⊢ (𝜑 → ∫𝐴(abs‘((∗‘∫𝐴𝐵 d𝑥) · ⦋𝑦 / 𝑥⦌𝐵)) d𝑦 = ∫𝐴((abs‘∫𝐴𝐵 d𝑥) · (abs‘⦋𝑦 / 𝑥⦌𝐵)) d𝑦) |
88 | 82, 87 | eqtr4d 2807 |
. . . . . . 7
⊢ (𝜑 → ((abs‘∫𝐴𝐵 d𝑥) · ∫𝐴(abs‘⦋𝑦 / 𝑥⦌𝐵) d𝑦) = ∫𝐴(abs‘((∗‘∫𝐴𝐵 d𝑥) · ⦋𝑦 / 𝑥⦌𝐵)) d𝑦) |
89 | 73, 88 | syl5eq 2816 |
. . . . . 6
⊢ (𝜑 → ((abs‘∫𝐴𝐵 d𝑥) · ∫𝐴(abs‘𝐵) d𝑥) = ∫𝐴(abs‘((∗‘∫𝐴𝐵 d𝑥) · ⦋𝑦 / 𝑥⦌𝐵)) d𝑦) |
90 | 54, 71, 89 | 3brtr4d 4816 |
. . . . 5
⊢ (𝜑 → ((abs‘∫𝐴𝐵 d𝑥) · (abs‘∫𝐴𝐵 d𝑥)) ≤ ((abs‘∫𝐴𝐵 d𝑥) · ∫𝐴(abs‘𝐵) d𝑥)) |
91 | 90 | adantr 466 |
. . . 4
⊢ ((𝜑 ∧ 0 <
(abs‘∫𝐴𝐵 d𝑥)) → ((abs‘∫𝐴𝐵 d𝑥) · (abs‘∫𝐴𝐵 d𝑥)) ≤ ((abs‘∫𝐴𝐵 d𝑥) · ∫𝐴(abs‘𝐵) d𝑥)) |
92 | 55 | adantr 466 |
. . . . 5
⊢ ((𝜑 ∧ 0 <
(abs‘∫𝐴𝐵 d𝑥)) → (abs‘∫𝐴𝐵 d𝑥) ∈ ℝ) |
93 | 44, 74 | itgrecl 23783 |
. . . . . 6
⊢ (𝜑 → ∫𝐴(abs‘𝐵) d𝑥 ∈ ℝ) |
94 | 93 | adantr 466 |
. . . . 5
⊢ ((𝜑 ∧ 0 <
(abs‘∫𝐴𝐵 d𝑥)) → ∫𝐴(abs‘𝐵) d𝑥 ∈ ℝ) |
95 | | simpr 471 |
. . . . 5
⊢ ((𝜑 ∧ 0 <
(abs‘∫𝐴𝐵 d𝑥)) → 0 < (abs‘∫𝐴𝐵 d𝑥)) |
96 | | lemul2 11077 |
. . . . 5
⊢
(((abs‘∫𝐴𝐵 d𝑥) ∈ ℝ ∧ ∫𝐴(abs‘𝐵) d𝑥 ∈ ℝ ∧ ((abs‘∫𝐴𝐵 d𝑥) ∈ ℝ ∧ 0 <
(abs‘∫𝐴𝐵 d𝑥))) → ((abs‘∫𝐴𝐵 d𝑥) ≤ ∫𝐴(abs‘𝐵) d𝑥 ↔ ((abs‘∫𝐴𝐵 d𝑥) · (abs‘∫𝐴𝐵 d𝑥)) ≤ ((abs‘∫𝐴𝐵 d𝑥) · ∫𝐴(abs‘𝐵) d𝑥))) |
97 | 92, 94, 92, 95, 96 | syl112anc 1479 |
. . . 4
⊢ ((𝜑 ∧ 0 <
(abs‘∫𝐴𝐵 d𝑥)) → ((abs‘∫𝐴𝐵 d𝑥) ≤ ∫𝐴(abs‘𝐵) d𝑥 ↔ ((abs‘∫𝐴𝐵 d𝑥) · (abs‘∫𝐴𝐵 d𝑥)) ≤ ((abs‘∫𝐴𝐵 d𝑥) · ∫𝐴(abs‘𝐵) d𝑥))) |
98 | 91, 97 | mpbird 247 |
. . 3
⊢ ((𝜑 ∧ 0 <
(abs‘∫𝐴𝐵 d𝑥)) → (abs‘∫𝐴𝐵 d𝑥) ≤ ∫𝐴(abs‘𝐵) d𝑥) |
99 | 98 | ex 397 |
. 2
⊢ (𝜑 → (0 <
(abs‘∫𝐴𝐵 d𝑥) → (abs‘∫𝐴𝐵 d𝑥) ≤ ∫𝐴(abs‘𝐵) d𝑥)) |
100 | 7 | absge0d 14390 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 0 ≤ (abs‘𝐵)) |
101 | 74, 44, 100 | itgge0 23796 |
. . 3
⊢ (𝜑 → 0 ≤ ∫𝐴(abs‘𝐵) d𝑥) |
102 | | breq1 4787 |
. . 3
⊢ (0 =
(abs‘∫𝐴𝐵 d𝑥) → (0 ≤ ∫𝐴(abs‘𝐵) d𝑥 ↔ (abs‘∫𝐴𝐵 d𝑥) ≤ ∫𝐴(abs‘𝐵) d𝑥)) |
103 | 101, 102 | syl5ibcom 235 |
. 2
⊢ (𝜑 → (0 = (abs‘∫𝐴𝐵 d𝑥) → (abs‘∫𝐴𝐵 d𝑥) ≤ ∫𝐴(abs‘𝐵) d𝑥)) |
104 | 3 | absge0d 14390 |
. . 3
⊢ (𝜑 → 0 ≤
(abs‘∫𝐴𝐵 d𝑥)) |
105 | | 0re 10241 |
. . . 4
⊢ 0 ∈
ℝ |
106 | | leloe 10325 |
. . . 4
⊢ ((0
∈ ℝ ∧ (abs‘∫𝐴𝐵 d𝑥) ∈ ℝ) → (0 ≤
(abs‘∫𝐴𝐵 d𝑥) ↔ (0 < (abs‘∫𝐴𝐵 d𝑥) ∨ 0 = (abs‘∫𝐴𝐵 d𝑥)))) |
107 | 105, 55, 106 | sylancr 567 |
. . 3
⊢ (𝜑 → (0 ≤
(abs‘∫𝐴𝐵 d𝑥) ↔ (0 < (abs‘∫𝐴𝐵 d𝑥) ∨ 0 = (abs‘∫𝐴𝐵 d𝑥)))) |
108 | 104, 107 | mpbid 222 |
. 2
⊢ (𝜑 → (0 <
(abs‘∫𝐴𝐵 d𝑥) ∨ 0 = (abs‘∫𝐴𝐵 d𝑥))) |
109 | 99, 103, 108 | mpjaod 840 |
1
⊢ (𝜑 → (abs‘∫𝐴𝐵 d𝑥) ≤ ∫𝐴(abs‘𝐵) d𝑥) |