MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg2uba Structured version   Visualization version   GIF version

Theorem itg2uba 23555
Description: Approximate version of itg2ub 23545. If 𝐹 approximately dominates 𝐺, then 1𝐺 ≤ ∫2𝐹. (Contributed by Mario Carneiro, 11-Aug-2014.)
Hypotheses
Ref Expression
itg2uba.1 (𝜑𝐹:ℝ⟶(0[,]+∞))
itg2uba.2 (𝜑𝐺 ∈ dom ∫1)
itg2uba.3 (𝜑𝐴 ⊆ ℝ)
itg2uba.4 (𝜑 → (vol*‘𝐴) = 0)
itg2uba.5 ((𝜑𝑥 ∈ (ℝ ∖ 𝐴)) → (𝐺𝑥) ≤ (𝐹𝑥))
Assertion
Ref Expression
itg2uba (𝜑 → (∫1𝐺) ≤ (∫2𝐹))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹   𝑥,𝐺   𝜑,𝑥

Proof of Theorem itg2uba
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 itg2uba.2 . . . 4 (𝜑𝐺 ∈ dom ∫1)
2 itg1cl 23497 . . . 4 (𝐺 ∈ dom ∫1 → (∫1𝐺) ∈ ℝ)
31, 2syl 17 . . 3 (𝜑 → (∫1𝐺) ∈ ℝ)
43rexrd 10127 . 2 (𝜑 → (∫1𝐺) ∈ ℝ*)
5 itg2uba.3 . . . . . . 7 (𝜑𝐴 ⊆ ℝ)
6 itg2uba.4 . . . . . . 7 (𝜑 → (vol*‘𝐴) = 0)
7 nulmbl 23349 . . . . . . 7 ((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) = 0) → 𝐴 ∈ dom vol)
85, 6, 7syl2anc 694 . . . . . 6 (𝜑𝐴 ∈ dom vol)
9 cmmbl 23348 . . . . . 6 (𝐴 ∈ dom vol → (ℝ ∖ 𝐴) ∈ dom vol)
108, 9syl 17 . . . . 5 (𝜑 → (ℝ ∖ 𝐴) ∈ dom vol)
11 ifnot 4166 . . . . . . . 8 if(¬ 𝑥𝐴, (𝐺𝑥), 0) = if(𝑥𝐴, 0, (𝐺𝑥))
12 eldif 3617 . . . . . . . . . 10 (𝑥 ∈ (ℝ ∖ 𝐴) ↔ (𝑥 ∈ ℝ ∧ ¬ 𝑥𝐴))
1312baibr 965 . . . . . . . . 9 (𝑥 ∈ ℝ → (¬ 𝑥𝐴𝑥 ∈ (ℝ ∖ 𝐴)))
1413ifbid 4141 . . . . . . . 8 (𝑥 ∈ ℝ → if(¬ 𝑥𝐴, (𝐺𝑥), 0) = if(𝑥 ∈ (ℝ ∖ 𝐴), (𝐺𝑥), 0))
1511, 14syl5eqr 2699 . . . . . . 7 (𝑥 ∈ ℝ → if(𝑥𝐴, 0, (𝐺𝑥)) = if(𝑥 ∈ (ℝ ∖ 𝐴), (𝐺𝑥), 0))
1615mpteq2ia 4773 . . . . . 6 (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 0, (𝐺𝑥))) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (ℝ ∖ 𝐴), (𝐺𝑥), 0))
1716i1fres 23517 . . . . 5 ((𝐺 ∈ dom ∫1 ∧ (ℝ ∖ 𝐴) ∈ dom vol) → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 0, (𝐺𝑥))) ∈ dom ∫1)
181, 10, 17syl2anc 694 . . . 4 (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 0, (𝐺𝑥))) ∈ dom ∫1)
19 itg1cl 23497 . . . 4 ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, 0, (𝐺𝑥))) ∈ dom ∫1 → (∫1‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 0, (𝐺𝑥)))) ∈ ℝ)
2018, 19syl 17 . . 3 (𝜑 → (∫1‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 0, (𝐺𝑥)))) ∈ ℝ)
2120rexrd 10127 . 2 (𝜑 → (∫1‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 0, (𝐺𝑥)))) ∈ ℝ*)
22 itg2uba.1 . . 3 (𝜑𝐹:ℝ⟶(0[,]+∞))
23 itg2cl 23544 . . 3 (𝐹:ℝ⟶(0[,]+∞) → (∫2𝐹) ∈ ℝ*)
2422, 23syl 17 . 2 (𝜑 → (∫2𝐹) ∈ ℝ*)
25 i1ff 23488 . . . . . . 7 (𝐺 ∈ dom ∫1𝐺:ℝ⟶ℝ)
261, 25syl 17 . . . . . 6 (𝜑𝐺:ℝ⟶ℝ)
27 eldifi 3765 . . . . . 6 (𝑦 ∈ (ℝ ∖ 𝐴) → 𝑦 ∈ ℝ)
28 ffvelrn 6397 . . . . . 6 ((𝐺:ℝ⟶ℝ ∧ 𝑦 ∈ ℝ) → (𝐺𝑦) ∈ ℝ)
2926, 27, 28syl2an 493 . . . . 5 ((𝜑𝑦 ∈ (ℝ ∖ 𝐴)) → (𝐺𝑦) ∈ ℝ)
3029leidd 10632 . . . 4 ((𝜑𝑦 ∈ (ℝ ∖ 𝐴)) → (𝐺𝑦) ≤ (𝐺𝑦))
31 eldif 3617 . . . . . 6 (𝑦 ∈ (ℝ ∖ 𝐴) ↔ (𝑦 ∈ ℝ ∧ ¬ 𝑦𝐴))
32 eleq1 2718 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
33 fveq2 6229 . . . . . . . . 9 (𝑥 = 𝑦 → (𝐺𝑥) = (𝐺𝑦))
3432, 33ifbieq2d 4144 . . . . . . . 8 (𝑥 = 𝑦 → if(𝑥𝐴, 0, (𝐺𝑥)) = if(𝑦𝐴, 0, (𝐺𝑦)))
35 eqid 2651 . . . . . . . 8 (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 0, (𝐺𝑥))) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 0, (𝐺𝑥)))
36 c0ex 10072 . . . . . . . . 9 0 ∈ V
37 fvex 6239 . . . . . . . . 9 (𝐺𝑦) ∈ V
3836, 37ifex 4189 . . . . . . . 8 if(𝑦𝐴, 0, (𝐺𝑦)) ∈ V
3934, 35, 38fvmpt 6321 . . . . . . 7 (𝑦 ∈ ℝ → ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, 0, (𝐺𝑥)))‘𝑦) = if(𝑦𝐴, 0, (𝐺𝑦)))
40 iffalse 4128 . . . . . . 7 𝑦𝐴 → if(𝑦𝐴, 0, (𝐺𝑦)) = (𝐺𝑦))
4139, 40sylan9eq 2705 . . . . . 6 ((𝑦 ∈ ℝ ∧ ¬ 𝑦𝐴) → ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, 0, (𝐺𝑥)))‘𝑦) = (𝐺𝑦))
4231, 41sylbi 207 . . . . 5 (𝑦 ∈ (ℝ ∖ 𝐴) → ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, 0, (𝐺𝑥)))‘𝑦) = (𝐺𝑦))
4342adantl 481 . . . 4 ((𝜑𝑦 ∈ (ℝ ∖ 𝐴)) → ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, 0, (𝐺𝑥)))‘𝑦) = (𝐺𝑦))
4430, 43breqtrrd 4713 . . 3 ((𝜑𝑦 ∈ (ℝ ∖ 𝐴)) → (𝐺𝑦) ≤ ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, 0, (𝐺𝑥)))‘𝑦))
451, 5, 6, 18, 44itg1lea 23524 . 2 (𝜑 → (∫1𝐺) ≤ (∫1‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 0, (𝐺𝑥)))))
46 iftrue 4125 . . . . . . . 8 (𝑥𝐴 → if(𝑥𝐴, 0, (𝐺𝑥)) = 0)
4746adantl 481 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ 𝑥𝐴) → if(𝑥𝐴, 0, (𝐺𝑥)) = 0)
4822ffvelrnda 6399 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ) → (𝐹𝑥) ∈ (0[,]+∞))
49 elxrge0 12319 . . . . . . . . . 10 ((𝐹𝑥) ∈ (0[,]+∞) ↔ ((𝐹𝑥) ∈ ℝ* ∧ 0 ≤ (𝐹𝑥)))
5048, 49sylib 208 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ) → ((𝐹𝑥) ∈ ℝ* ∧ 0 ≤ (𝐹𝑥)))
5150simprd 478 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → 0 ≤ (𝐹𝑥))
5251adantr 480 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ 𝑥𝐴) → 0 ≤ (𝐹𝑥))
5347, 52eqbrtrd 4707 . . . . . 6 (((𝜑𝑥 ∈ ℝ) ∧ 𝑥𝐴) → if(𝑥𝐴, 0, (𝐺𝑥)) ≤ (𝐹𝑥))
54 iffalse 4128 . . . . . . . 8 𝑥𝐴 → if(𝑥𝐴, 0, (𝐺𝑥)) = (𝐺𝑥))
5554adantl 481 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ ¬ 𝑥𝐴) → if(𝑥𝐴, 0, (𝐺𝑥)) = (𝐺𝑥))
56 itg2uba.5 . . . . . . . . 9 ((𝜑𝑥 ∈ (ℝ ∖ 𝐴)) → (𝐺𝑥) ≤ (𝐹𝑥))
5712, 56sylan2br 492 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ ¬ 𝑥𝐴)) → (𝐺𝑥) ≤ (𝐹𝑥))
5857anassrs 681 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ ¬ 𝑥𝐴) → (𝐺𝑥) ≤ (𝐹𝑥))
5955, 58eqbrtrd 4707 . . . . . 6 (((𝜑𝑥 ∈ ℝ) ∧ ¬ 𝑥𝐴) → if(𝑥𝐴, 0, (𝐺𝑥)) ≤ (𝐹𝑥))
6053, 59pm2.61dan 849 . . . . 5 ((𝜑𝑥 ∈ ℝ) → if(𝑥𝐴, 0, (𝐺𝑥)) ≤ (𝐹𝑥))
6160ralrimiva 2995 . . . 4 (𝜑 → ∀𝑥 ∈ ℝ if(𝑥𝐴, 0, (𝐺𝑥)) ≤ (𝐹𝑥))
62 reex 10065 . . . . . 6 ℝ ∈ V
6362a1i 11 . . . . 5 (𝜑 → ℝ ∈ V)
64 fvex 6239 . . . . . . 7 (𝐺𝑥) ∈ V
6536, 64ifex 4189 . . . . . 6 if(𝑥𝐴, 0, (𝐺𝑥)) ∈ V
6665a1i 11 . . . . 5 ((𝜑𝑥 ∈ ℝ) → if(𝑥𝐴, 0, (𝐺𝑥)) ∈ V)
67 fvexd 6241 . . . . 5 ((𝜑𝑥 ∈ ℝ) → (𝐹𝑥) ∈ V)
68 eqidd 2652 . . . . 5 (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 0, (𝐺𝑥))) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 0, (𝐺𝑥))))
6922feqmptd 6288 . . . . 5 (𝜑𝐹 = (𝑥 ∈ ℝ ↦ (𝐹𝑥)))
7063, 66, 67, 68, 69ofrfval2 6957 . . . 4 (𝜑 → ((𝑥 ∈ ℝ ↦ if(𝑥𝐴, 0, (𝐺𝑥))) ∘𝑟𝐹 ↔ ∀𝑥 ∈ ℝ if(𝑥𝐴, 0, (𝐺𝑥)) ≤ (𝐹𝑥)))
7161, 70mpbird 247 . . 3 (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 0, (𝐺𝑥))) ∘𝑟𝐹)
72 itg2ub 23545 . . 3 ((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 0, (𝐺𝑥))) ∈ dom ∫1 ∧ (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 0, (𝐺𝑥))) ∘𝑟𝐹) → (∫1‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 0, (𝐺𝑥)))) ≤ (∫2𝐹))
7322, 18, 71, 72syl3anc 1366 . 2 (𝜑 → (∫1‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 0, (𝐺𝑥)))) ≤ (∫2𝐹))
744, 21, 24, 45, 73xrletrd 12031 1 (𝜑 → (∫1𝐺) ≤ (∫2𝐹))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383   = wceq 1523  wcel 2030  wral 2941  Vcvv 3231  cdif 3604  wss 3607  ifcif 4119   class class class wbr 4685  cmpt 4762  dom cdm 5143  wf 5922  cfv 5926  (class class class)co 6690  𝑟 cofr 6938  cr 9973  0cc0 9974  +∞cpnf 10109  *cxr 10111  cle 10113  [,]cicc 12216  vol*covol 23277  volcvol 23278  1citg1 23429  2citg2 23430
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052  ax-addf 10053
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-disj 4653  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-of 6939  df-ofr 6940  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-2o 7606  df-oadd 7609  df-er 7787  df-map 7901  df-pm 7902  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-fi 8358  df-sup 8389  df-inf 8390  df-oi 8456  df-card 8803  df-cda 9028  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-n0 11331  df-z 11416  df-uz 11726  df-q 11827  df-rp 11871  df-xneg 11984  df-xadd 11985  df-xmul 11986  df-ioo 12217  df-ico 12219  df-icc 12220  df-fz 12365  df-fzo 12505  df-fl 12633  df-seq 12842  df-exp 12901  df-hash 13158  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-clim 14263  df-sum 14461  df-rest 16130  df-topgen 16151  df-psmet 19786  df-xmet 19787  df-met 19788  df-bl 19789  df-mopn 19790  df-top 20747  df-topon 20764  df-bases 20798  df-cmp 21238  df-ovol 23279  df-vol 23280  df-mbf 23433  df-itg1 23434  df-itg2 23435
This theorem is referenced by:  itg2lea  23556  itg2split  23561
  Copyright terms: Public domain W3C validator